

AUTOMATED	BIG	DATA	REST	SERVICE	CREATION	IN
SUPPORT	OF	BIG	DATA	APPLICATIONS

G.	C.	Fox	(Pi)	G.	von	Laszewski	(co-PI)

(c)	Gregor	von	Laszewski,	Geoffrey	C.	Fox,	2019

AUTOMATED	BIG	DATA	REST	SERVICE	CREATION	IN
SUPPORT	OF	BIG	DATA	APPLICATIONS

1	PREFACE
1.1	ABSTRACT	☁�
1.1.1	Purpose	of	the	Work	Reported

2	TECHNOLOGY	ASSESMENT
2.1	Task	2	–	Technology	Analysis	☁�
2.1.1	Previous	accomplishments

2.2	RAML	☁�
2.3	API	Blueprint	☁�
2.4	OpenAPI	☁�
2.4.1	Swagger	CodeGen

2.5	Cloudmesh	OpenAPI	☁�
3	REST	SERVICES
3.1	Task	3:	Big	Data	REST	Services	☁�
3.2	OpenAPI	REST	Services	with	Swagger	☁�
3.2.1	Swagger	Tools
3.2.2	Swagger	Community	Tools
3.2.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

3.3	OpenAPI	3.0	REST	Service	via	Introspection	☁�
3.3.1	Verification
3.3.2	Swagger-UI
3.3.3	Mock	service
3.3.4	Exercise

4	REST	SPECIFICATIONS
4.1	Task	4	–	Generalized	Rest	Service	Specifications	☁�
4.2	Amazon	Redshift	OpenAPI	Specification	☁�
4.3	Virtual	Directory	☁�
4.4	Elastic	Map	Reduce	☁�

5	APPLICATIONS
5.1	Task	5	–	Application	Examples	☁�
5.2	S-cone	Classification	Using	REST	Services	and	Machine	Learning	☁�
5.2.1	Abstract
5.2.2	Introduction

5.2.3	Data
5.2.3.1	Preprocessing
5.2.3.2	Visualization

5.2.4	Model	Discussion
5.2.4.1	Failures
5.2.4.2	Activation	Function
5.2.4.3	Decision

5.2.5	REST	Service	Implementations
5.2.6	Specification

5.3	Rookie	Fantasy	Football	Point	Prediction	☁�
5.3.1	Abstract
5.3.2	Introduction
5.3.3	Data	Set
5.3.4	KNN	Algorithm
5.3.5	Implementation
5.3.6	Limitations
5.3.7	Conclusion
5.3.8	Specification

5.4	Analysis	of	soccer	data	with	kmeans	☁�
5.4.1	Abstract
5.4.2	Introduction
5.4.2.1	Sport	Analytics
5.4.2.2	Sensors	in	Sports

5.4.3	Soccer	Dataset
5.4.4	Algorithm	Discussion
5.4.4.1	K-means
5.4.4.2	Spectral	Clustering
5.4.4.3	Dimensional	Reduction

5.4.5	Results
5.4.6	Analysis
5.4.7	Specification

5.5	Tetris	Score	Analysis	Server	☁�
5.5.1	Abstract
5.5.2	Introduction
5.5.3	Design
5.5.4	Architecture
5.5.5	Dataset

5.5.6	Results
5.5.7	Conclusion
5.5.8	Specification

5.6	Political	Bias	and	Voting	Trends	☁�
5.6.1	Abstract
5.6.2	Introduction
5.6.3	Requirements
5.6.4	Design
5.6.4.1	Python
5.6.4.2	REST	Service
5.6.4.3	Docker

5.6.5	Dataset
5.6.6	Results
5.6.7	Discussion
5.6.8	Conclusion
5.6.9	Work	Breakdown
5.6.10	Specification

5.7	Spam	Analysis	with	Spamalot	☁�
5.7.1	Abstract
5.7.2	Introduction
5.7.3	The	Algorithm
5.7.3.1	Naive	Bayes
5.7.3.1.1	Metrics

5.7.3.2	Support	Vector	Machines	(SVM)
5.7.4	The	Data	Set
5.7.5	Model	Results
5.7.6	Implementation
5.7.6.1	The	Server
5.7.6.2	The	Upload	Function	and	Classification
5.7.6.3	Specification

5.7.7	Conclusion
6	DESSIMINTAION
6.1	Task	6	–	Dissemination	☁�
6.1.1	Conference	Presentation
6.1.2	Task	6.1	Community	Testing

7	RESOURCES
7.1	Task	7	–	Development	Resources	☁�

8	TUTORIALS
8.1	Overview	☁�
8.2	AUTOMATED	REST	SERVICE	GENERATION	WITH	EVE
8.2.1	Rest	Services	with	Eve	☁�
8.2.1.1	Ubuntu	install	of	MongoDB
8.2.1.2	macOS	install	of	MongoDB
8.2.1.3	Windows	10	Installation	of	MongoDB
8.2.1.4	Database	Location
8.2.1.5	Verification
8.2.1.6	Building	a	simple	REST	Service
8.2.1.7	Interacting	with	the	REST	service
8.2.1.8	Creating	REST	API	Endpoints
8.2.1.9	REST	API	Output	Formats	and	Request	Processing
8.2.1.10	REST	API	Using	a	Client	Application
8.2.1.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	⷏�

8.2.2	HATEOAS	☁�
8.2.2.1	Filtering
8.2.2.2	Pretty	Printing
8.2.2.3	XML

8.2.3	Extensions	to	Eve	☁�
8.2.3.1	Object	Management	with	Eve	and	Evegenie
8.2.3.1.1	Installation
8.2.3.1.2	Starting	the	service
8.2.3.1.3	Creating	your	own	objects

8.3	AUTOMATED	REST	 SERVICE	GENERATION	WITH	CODEGEN
FOR	OPENAPI	2.0
8.3.1	OpenAPI	2.0	Specification	☁�
8.3.1.1	The	Virtual	Cluster	example	API	Definition
8.3.1.1.1	Terminology
8.3.1.1.2	Specification

8.3.1.2	References
8.3.2	OpenAPI	REST	Service	via	Introspection	☁�
8.3.2.1	Verification
8.3.2.2	Mock	service
8.3.2.3	Exercise

8.3.3	OpenAPI	REST	Service	via	Codegen	☁�
8.3.3.1	Step	1:	Define	Your	REST	Service

8.3.3.2	Step	2:	Server	Side	Stub	Code	Generation	and	Implementation
8.3.3.2.1	Setup	the	Codegen	Environment
8.3.3.2.2	Generate	Server	Stub	Code
8.3.3.2.3	Fill	in	the	actual	implementation

8.3.3.3	Step	3:	Install	and	Run	the	REST	Service:
8.3.3.3.1	Start	a	virtualenv:
8.3.3.3.2	Make	sure	you	have	the	latest	pip:
8.3.3.3.3	Install	the	requirements	of	the	server	side	code:
8.3.3.3.4	Install	the	server-side	code	package:
8.3.3.3.5	Run	the	service
8.3.3.3.6	Verify	the	service	using	a	web	browser:

8.3.3.4	Step	4:	Generate	Client-Side	Code	and	Verify
8.3.3.4.1	Client-side	code	generation:
8.3.3.4.2	Install	the	client-side	code	package:
8.3.3.4.3	Using	the	client	API	to	interact	with	the	REST	service

8.3.3.5	Towards	a	Distributed	Client	Server
8.4	AUTOMATED	REST	SERVICE	GENERATION	WITH	CONEXION
FOR	OPENAPI	3.0
8.4.1	REST	Specifications	☁�
8.4.1.1	OPENAPI
8.4.1.1.1	Open	API	3.0	Specification	(OAS	3.0)
8.4.1.1.1.1	Definitions

8.4.1.2	RAML
8.4.1.3	API	Blueprint
8.4.1.4	JsonAPI
8.4.1.5	Tinyspec
8.4.1.6	Tools
8.4.1.6.1	Connexion

8.4.2	OpenAPI	3.0	REST	Service	via	Introspection	☁�
8.4.2.1	Verification
8.4.2.2	Swagger-UI
8.4.2.3	Mock	service
8.4.2.4	Exercise

8.4.3	REST	AI	services	Example	☁�
8.4.3.1	Service	Endpoints/	Paths
8.4.3.1.1	Path	kmeans/upload
8.4.3.1.2	Path	kmeans/fit

8.4.3.1.3	Path	kmeans/predict
8.4.3.2	Files
8.4.3.3	Running	the	example
8.4.3.4	Notes

9	REFERENCES

1	PREFACE

1.1	ABSTRACT	☁�
This	report	summarizes	the	progress	made	on	the	project:

Automated	Big	Data	REST	Service	Creation	 in	Support	of	Big	Data
Applications

Report	Period:	9/30/18-8/31/2019

Number:	60NANB18D268

1.1.1	PURPOSE	OF	THE	WORK	REPORTED

In	this	research	report,	we	lay	out	an	approach	to	defining	composable	Big	Data
Services	 in	 support	 of	 the	 NIST	 Big	 Data	 Reference	 Architecture	 (NIST-
BDRA).

The	work	is	broken	down	into	the	following	tasks	reflaced	in	the	outline	of	this
report:

Task	1:	Provide	this	report	that	includes	the	following	activities

Task	 2:	 A	 technology	 Assesment	 and	 Analysis,	 to	 identify	 community
efforts	that	we	can	leverage	and	integrate	in	our	activities	and	identify	gaps
that	this	work	needs	to	fill.

Task	3:	Identify	how	we	can	conveniently	create	REST	services	that	*are
defined	in	the	BDRA	Interface	definitions.

Task	 4:	 Work	 with	 the	 community	 to	 identify	 extensions	 to	 the	 NIST
BDRA	 interface	 definitions	 that	 are	 not	 covered	 by	 the	 specification,	 to
validate	the	approach	of	using	REST	services.

Task	5:	Identify	if	the	frameworks	we	use	can	be	used	for	*implementing
Big	Data	applications.

Task	6:	Dessiminate	the	activities

Task	7:	Provide	a	summary	for	the	tools	and	resources	we	developed.

2	TECHNOLOGY	ASSESMENT

2.1	TASK	2	–	TECHNOLOGY	ANALYSIS	☁�
Over	the	last	years,	the	ecosystem	regarding	Big	Data	has	significantly	changed.
This	is	fostered	by	new	technologies	in	part	even	driven	by	Big	Data	Analysis.
Prominent	 appearance	 of	 containers,	 and	 GPU’s	 as	 part	 of	 HPC	 and	 Cloud
infrastructures	have	to	be	considered.	In	this	task,	we	will	be	analyzing	new	and
influential	 technologies	 to	be	watched	and	analyzed	to	 identify	new	trends	 that
influence	future	developments	of	Big	Data	Architectures.

As	one	of	the	technologies	significantly	changed,	it	was	important	to	revisit	the
automated	generation	of	REST	services.	This	includes	the	following:

1.	 A	 technology	 overview	 that	 was	 gradually	 improved	 throughout	 the
duration	of	the	funding	period.

Here	we,	for	now,	focus	on	the	review	of	OpenAPI	like	specifications.

2.	 A	 section	 that	 illustrates	 the	 simplicity	 of	 creating	 REST	 services	 while
leveraging	community	tools

Here	 we	 primarily	 focus	 on	 the	 creation	 of	 REST	 services	 through
automated	 introspection	 of	 the	 YAML	 file	 that	 defines	 the	 OpeAPI	 rest
service

3.	 The	 development	 of	 a	 sophisticated	 tool	 that	 allows	 merging	 OpenAPI
specifications.

2.1.1	PREVIOUS	ACCOMPLISHMENTS

Our	previous	implementations	contained	the	use	of	a	straightforward	mechanism
to	 define	 REST	 services.	 Although	 this	 approach	 is	 much	 simpler	 than	 the
approach	 we	 suggest	 now,	 it	 lacked	 interoperability	 with	 language	 and
framework	independent	 implementations	as	 it	was	strictly	based	on	technology
only	supported	in	Python.	This	approach	is	also	dated	as	the	tools	that	we	used

became	deprecated,	and	a	new	approach	was	needed.

We	 have	 thus	 evaluated	 several	 frameworks	 to	 easily	 develop	 REST	 services
while	at	the	same	time	look	for	specification	focus	that	is	language-independent
and	may	be	adapted	by	the	community	in	general.	From	these	frameworks,	we
primarily	looked	at	Swagger/OpenAPI,	RAML,	and	API	Blueprint.	Form	those
we	settled	on	OpenAPI	due	to	the	following	reasons

The	specification	is	done	now	by	the	community
Through	 previous	 versions	 e.g.,	 Swagger,	 OpenAPI	 has	 been	 proven	 to
work
The	specification	created	nice-looking	Web	pages
The	specification	can	be	hosted	on	GitHub	(as	do	others	also)
The	documents	about	swagger	say	the	community	is	large
The	 constructs	 provide	 sufficient	 richness	 for	 the	 specification	 of	 REST
APIs

In	addition,	we	developed	a	set	of	scripts	that	explored	if	OpenAPI	to	code	(in
our	 case	 python)	 can	 successfully	 be	 used	 to	 implement	multiple	 independent
and	 dependent	 REST	 services	 that	 are	 automatically	 derived	 from	 the
specification	 itself.	 In	 addition,	 instantiations	 or	 implementations	 of	 the
operations	 into	 the	 specification	 based	 on	 source	 code	 management	 has	 been
evaluated.

This	has	been	successfully	demonstrated	in	the	following	ways.

1.	 The	creation	of	a	joint	specification	generator	of	a	service	that	merges	two
independent	OpenAPI	specifications

2.	 The	creation	of	an	example	 that	uses	 the	specification	 to	generate	 internal
methods	 based	 on	 introspection	 of	 the	 code	 as	 provided	 by	 the	 swagger
community

During	the	last	six	month,	we	identified	that	this	approach	required	considerable
programming	expertise	and	 turned	out	 to	be	out	of	 reach	 for	many	application
developers	 with	 little	 experience	 in	 programming.	 Thus	 we	 developed	 a	 new
approach	that	has	been	very	successful	and	is	documented	in	this	report.

2.2	RAML	☁�
According	to	[1]	RESTful	API	Modeling	Language	(RAML)	manages	 the	API
lifecycle	from	design	to	sharing.	It	allows	to	focus	on	the	parts	that	are	needed,
is	reusable,	and	has	a	machine-readable	format	that	is	also	human-friendly.

RAML	 has	 a	 significant,	 but	 much	 smaller	 community	 than	 OpenAPI.	 In
addition	to	expressing	REST	API’s	RAML	can	also	be	used	for	expressing	other
APIs.

Due	to	the	dominance	of	OpenAPI	the	RAML	team	has	also	joined	the	OpenAPI
initiative	[2].	This	makes	it	evident	 that	OpenAPI	is,	at	 this	 time,	 the	preferred
choice	for	us	to	define	API’s	based	on	template	formats.

2.3	API	BLUEPRINT	☁�
The	API	Bluprint	is	presented	at	[3].	It	focuses	on	the	collaborative	specification
of	 API’s.	 It	 is	 an	 open	 specification	 and	 and	 is	 under	 MIT	 license	 with	 its
specifications	being	posted	on	GitHub:

https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0001-rfc-
process.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0002-
authentication.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0003-
authentication-basic.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0004-
request-parameters.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0005-
authentication-oauth2.md

Additionally,	we	find	the	following	useful	information:

A	tutorial:	https://apiblueprint.org/documentation/tutorial.html
The	documentation:	https://apiblueprint.org/documentation/
A	list	of	tools:	https://apiblueprint.org/tools.html

https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0001-rfc-process.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0002-authentication.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0003-authentication-basic.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0004-request-parameters.md
https://github.com/apiaryio/api-blueprint-rfcs/blob/master/rfcs/0005-authentication-oauth2.md
https://apiblueprint.org/documentation/tutorial.html
https://apiblueprint.org/documentation/
https://apiblueprint.org/tools.html

According	 to	 [4]	 “the	 API	 Blueprint	 lacks	 advanced	 construct	 and	 code	 level
tooling.	Because	of	this,	its	adoption	has	been	slow,	dwarfed	when	compared	to
Swagger	or	RAML”.

2.4	OPENAPI	☁�
The	 OpenAPI	 specification	 was	 derived	 initially	 form	 a	 specification	 called
Swagger.	Since	then,	the	community	has	engaged	in	separating	the	specification,
which	is	now	known	under	the	name	OpenAPI.

The	 organization	 that	 contributed	 Swagger	 to	 OpenAPI	 is	 now	 focussing	 on
building	 tools	 around	 it	 to	 make	 the	 creation	 of	 OpenAPIs	 easier
(https://swagger.io/).	A	statement	from	the	Web	site	reflects	this:

“OpenAPI	 specification	 (formerly	Swagger	Specification)	 is	 an	API
description	 format	 for	 REST	 APIs.	 An	 OpenAPI	 file	 allows	 you	 to
describe	your	entire	API”.

Previous	efforts	we	conducted	used	OpenAPI	v2.	This	version	is	also	known	as
Swagger	due	to	the	company	project	that	this	version	was	developed	under.	The
choice	for	OpenAPI	v2	was	motivated	due	to	the	fact	that	the	specification	was
widely	 used,	 and	 the	 tools	 for	 it	 were	 sufficiently	 mature.	 However,	 the
community	developed	the	new	OpenAPI	v3.

The	different	versions	available	are	available	at

https://github.com/OAI/OpenAPI-Specification/tree/master/versions

In	particular	the	specifications	for	the	following	verions	are	available:

v3.0.0:

https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md

v3.0.1:

https://github.com/OAI/OpenAPI-

https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md

Specification/blob/master/versions/3.0.1.md

v3.0.3:

https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md

A	significant	effort	was	spent	to	keep	up	with	these	versions.	The	specifications
were	 all	 updated	 to	 OpenAPI	 v3,	 and	 feedback	 to	 the	 NIST	 BDRA	Working
group.	It	took	more	than	than	one-month	effort	to	convert	all	specifications	from
v2	to	v3.

2.4.1	SWAGGER	CODEGEN

Our	 code	 was	 initially	 relying	 on	 Swagger	 CodeGen
https://swagger.io/tools/swagger-codegen/.	 This	 tool	 creates	 and	 derives	 a
comprehensive	 API	 based	 on	 the	 OpenAPI	 specification.	 We	 originally
developed	all	backend	services	using	this	tool	but	found	that

the	tool	did	not	work	well	when	we	switched	to	OpenAPI	v3

when	using	it	with	contributors	to	our	efforts,	the	development	of	code	was
too	 complicated.	 We	 guided	 on	 how	 to	 services	 that	 are	 automatically
derived	from	the	YAML	service,	while	associating	simply	python	functions
as	operationID’s.

Thus	 although	 we	 did	 not	 initially	 plan	 for	 it,	 we	 were	 forced	 to	 look	 for
alternatives	 addressing	 these	 two	 issues.	 Initially,	 none	 of	 the	 tools	 were
sufficient	to	support	OpenAPI	v3.	We	conducted	tool	analyses	in	January	2019,
and	 in	 July	 2019.	 In	 July,	 we	 found	 that	 the	 support	 for	 OpenAPI	 v3	 by	 the
community	had	 reached	critical	 support,	 and	 it	was	possible	 for	us	 to	 tr	 to	v3.
However,	 we	 decided	 at	 that	 time	 to	 drop	 our	 use	 of	 codegen	 as	 it	 was	 not
mature	enough	for	us	and	was	too	complicated	for	our	community.

The	 later	was	mainly	motivated	 by	 a	 fact	 that	we	 found	 out	 after	 the	 funding
period	of	this	project	ended,	and	we	wished	we	would	have	known	earlier.	We
were	 approached	 In	 October	 by	 the	 top	 contributor	 to	 swagger	 codegen.	 He
alerted	 us	 that	 a	 new	 fork	 was	 developed	 by	 him	 and	 others	 which	 is	 now

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://swagger.io/tools/swagger-codegen/

available	at

https://github.com/OpenAPITools/openapi-
generator/blob/master/docs/qna.md

Naturaly,	it	was	too	late	for	us	to	evaluate	this	new	version.	However,	our	new
method	 is	 better	 suited	 for	 the	 activities	 we	 undertook.	 The	 reasons	 for	 the
switch	include:

For	 a	 long	 time	 there	 was	 confusion	 about	 the	 support	 of	 codegen	 for
OpenAPI	2.0	vs	3.0.

Beginner	 students	 could	 not	 easily	 use	 swagger	 codegen,	 so	 we	 wrote	 a
custom	 template	 how	 to	 generate	API’s	 form	 a	 specification	while	 at	 the
same	time	providing	extensive	documentation	on	how	to	do	it.

Besides	us	noticing	that	codegen	was	complex	and,	at	the	time	not	provide
sufficient	 support	 for	 v3.	 This	 was	 alos	 mentioned	 by	 the	 developers
motivating	their	new	branch.

The	 availability	 of	 Conexions	 ???	 automated	 introspection	 to	 create	 an
OpenAPI	v3	Web	service	is	sufficient	for	our	prototyping	efforts.

When	discussing	 the	 two	approaches	with	students,	 they	prefer	 the	use	of
the	 conexion	 server	 and	 the	 integration	 of	 operationIDs,	 which	 we	 gave
simple	examples	to.	Also	the	simple	examples	we	provided	as	teaching	tool
to	the	community	were	much	appreciated	and	could	users	get	started	within
minutes.

When	comparing	the	efforts	for	one	versus	the	other,	we	informally	observed:

Swagger	 codegen	 needed	 1-2	 month	 for	 students	 to	 comprehend,	 while
some	students	never	mastered	 it.	We	observed	that	no	one	has	 two	month
time	for	learning	this,	so	the	codegen	solution	was	not	appropriate	even	if	it
would	have	worked.

Instead	 of	 swagger	 codegen	we	 now	use	 the	 implicit	 creation	 of	 the	API
directly	from	the	YAML	file	via	connexion.	This	was	a	winning	transition
as	we	now	cab	create	APIs	in	1	week,	and	all	students	can	do	it.

https://github.com/OpenAPITools/openapi-generator/blob/master/docs/qna.md

We	also	 found	a	 lack	of	documentation	 for	 the	new	codegen	 (which	may
have	been	fixed	by	now)	in	regards	to	samples	discussing	data	upload,	and
authentication,	as	well	as	authorization	examples.

2.5	CLOUDMESH	OPENAPI	☁�
Our	previous	approach	as	outlined	in

https://github.com/cloudmesh-
community/book/blob/master/chapters/rest/swagger-codegen.md

reviled	 that	 it	was	 too	 complicated	 for	 inexperienced	 developers	 to	 use.	 Since
then	have	devised	a	new	usage	workflow	that	we	have	documented	in

https://github.com/cloudmesh-
community/book/blob/master/chapters/rest/swagger-introspection.md

and	also	included	in	this	report.	Furthermore,	we	have	developed	a	sophisticated
extension	 to	 our	 multi-cloud	 environment	 called	 Cloudmesh	 that	 allows	 the
instantiation	as	well	as	the	combination	of	OpenAPI	specification	and	start	them
as	a	REST	prototype	service.

This	tool	is	available	at

https://github.com/cloudmesh/cloudmesh-openapi

It	has	the	following	manual	page:
Usage:

						openapi	merge	[SERVICES...]	[--dir=DIR]	[--verbose]

						openapi	list	[--dir=DIR]

						openapi	description	[SERVICES...]	[--dir=DIR]

						openapi	md	FILE	[--indent=INDENT]

						openapi	codegen	[SERVICES...]	[--srcdir=SRCDIR]

																						[--destdir=DESTDIR]

						openapi	server	start	YAML	[--directory=DIRECTORY]

																																[--port=PORT]	[--server=SERVER]

																															[--verbose]

						openapi	server	stop	YAML

Arguments:

				DIR			The	directory	of	the	specifications

				FILE		The	specification

				SRCDIR			The	directory	of	the	specifications

				DESTDIR		The	directory	where	the	generated	code	should	be	put

Options:

				--verbose										specifies	to	run	in	debug	mode

																							[default:	False]

				--port=PORT												the	port	for	the	server	[default:	8080]

				--directory=DIRECTORY		the	directory	in	which	the	server	is	run	

																											[default:	./]

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-codegen.md
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-introspection.md
https://github.com/cloudmesh/cloudmesh-openapi

				--server=SERVER								the	server	[default:	flask]

Description:

				This	command	does	some	useful	things.

3	REST	SERVICES

3.1	TASK	3:	BIG	DATA	REST	SERVICES	☁�
REST	Services	have	become	very	popular	as	part	of	the	Web	to	offer	services	to
the	 community.	 We	 are	 leveraging	 this	 popularity	 and	 develop	 several	 rest
services	 in	 support	 of	 Big	 Data	 Architectures.	 The	 REST	 services	 are
composable	and	allow	reuse	in	big	data	applications	to	build	quickly	frameworks
that	support	the	analysis.

3.2	OPENAPI	REST	SERVICES	WITH	SWAGGER	☁�
Swagger	https://swagger.io/	is	a	tool	for	developing	API	specifications	based	on
the	OpenAPI	Specification	 (OAS).	 It	 allows	 not	 only	 the	 specification	 but	 the
generation	of	code	based	on	the	specification	in	a	variety	of	languages.

Swagger	 itself	 has	 several	 tools	 which	 together	 build	 a	 framework	 for
developing	REST	services	for	a	variety	of	languages.

3.2.1	SWAGGER	TOOLS

The	primary	Swagger	tools	of	interest	are:

Swagger	Core

includes	 libraries	 for	 working	 with	 Swagger	 specifications
https://github.com/swagger-api/swagger-core.

Swagger	Codegen

allows	 generating	 code	 from	 the	 specifications	 to	 develop	 Client	 SDKs,
servers,	 and	 documentation.	 https://github.com/swagger-api/swagger-
codegen

Swagger	UI

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger.md
https://swagger.io/
https://github.com/swagger-api/swagger-core
https://github.com/swagger-api/swagger-codegen

is	 an	 HTML5	 based	 UI	 for	 exploring	 and	 interacting	 with	 the	 specified
APIs	https://github.com/swagger-api/swagger-ui

Swagger	Editor

is	a	Web-browser	based	editor	 for	composing	specifications	using	YAML
https://github.com/swagger-api/swagger-editor

Swagger	Hub

is	 a	 Web	 service	 to	 collaboratively	 develop	 and	 host	 OpenAPI
specifications	https://swagger.io/tools/swaggerhub/

The	developed	APIs	can	be	hosted	and	further	developed	on	an	online	repository
named	 SwaggerHub	 https://app.swaggerhub.com/home	 The	 convenient	 online
editor	 is	available	which	also	can	be	 installed	 locally	on	a	variety	of	operating
systems	including	macOS,	Linux,	and	Windows.

3.2.2	SWAGGER	COMMUNITY	TOOLS

notify	us	about	other	tools	that	you	find	and	would	like	us	to	mention	here.

3.2.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

Swagger	 toolbox	 is	 a	 utility	 that	 can	 convert	 JSON	 to	 swagger	 compatible
YAML	models.	It	is	hosted	online	at

https://swagger-toolbox.firebaseapp.com/

The	source	code	to	this	tool	is	available	on	GitHub	at

https://github.com/essuraj/swagger-toolbox

It	is	crucial	to	make	sure	that	the	JSON	model	is	configured	correctly.	As	such,
each	datatype	must	be	wrapped	in	“quotes”	and	the	last	element	must	not	have	a	
,	behind	it.

In	case	you	have	large	models,	we	recommend	that	you	gradually	add	more	and

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-editor
https://swagger.io/tools/swaggerhub/
https://app.swaggerhub.com/home
https://swagger-toolbox.firebaseapp.com/
https://github.com/essuraj/swagger-toolbox

more	 features	 so	 that	 it	 is	 easier	 to	debug	 in	 case	of	 an	 error.	This	 tool	 is	 not
designed	 to	 provide	 back	 a	 full-featured	 OpenAPI,	 but	 help	 you	 get	 started
deriving	one.

Let	us	look	at	a	small	example.	Let	us	assume	we	want	to	create	a	REST	service
to	execute	a	command	on	the	remote	service.	We	know	this	may	not	be	a	good
idea	if	it	is	not	secured	correctly,	so	be	extra	careful.	A	good	way	to	simulate	this
is	just	to	use	a	return	string	instead	of	executing	the	command.

Let	us	assume	the	JSON	schema	looks	like:

The	output	the	swagger	toolbox	creates	is

As	you	can	see	it	is	far	from	complete,	but	it	could	be	used	to	get	you	started.

Based	on	this	tool	develop	a	rest	service	to	which	you	send	a	schema	in	JSON
format	from	which	you	get	back	the	YAML	model.

3.3	OPENAPI	3.0	REST	SERVICE	VIA	INTROSPECTION	☁�
The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	 read	 in	 the	 specification	 from	 its	 YAML	 file.	 It	 then	 introspects	 and
dynamically	creates	methods	that	are	used	for	the	implementation	of	the	server.

The	full	example	for	this	is	available	in

https://github.com/cloudmesh-
community/book/tree/master/examples/rest/cpu

An	extensive	documentation	is	available	at

{

			"host":	"string",

			"command":	"string"

}

		required:

				-	"host"

				-	"command"

		properties:

				host:

						type:	"string"

				command:

						type:	"string"

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-introspection.md
https://github.com/cloudmesh-community/book/tree/master/examples/rest/cpu

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 returns	 the	 cpu	 information	 of	 a	 computer	 to	 dynamically
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py
files	as	our	YAML	file	calls	out	methods	from	cpu.py

The	YAML	file	looks	as	follows.

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

Here	 we	 implement	 a	 get	 method	 and	 associate	 is	 with	 the	 URL	 /cpu.	 The
operationid,	 defines	 the	 method	 that	 we	 call	 which,	 as	 we	 used	 the	 local
directory,	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the
operation	id.

A	 straightforward	 function	 to	 return	 the	 CPU	 information	 is	 defined	 in	 cpu.py
which	we	list	next

We	 have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	server	in	two	different	terminals

When	we	call

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

			osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

			pip	install	-r	requirements.txt

demo:

			$(call	terminal,	python	server.py)

			sleep	3

			@echo	"==="

			@echo	"Get	the	info"

			@echo	"==="

			curl	http://localhost:8080/cloudmesh/cpu

			@echo

			@echo	"==="

our	demo	is	run.

3.3.1	VERIFICATION

It	is	essential	to	be	able	to	verify	if	a	YAML	file	is	correct.	To	identify	this,	the
easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	version	available
at:

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example,	and	paste	your	YAML
file	in	it.	Debug	messages	are	helping	you	to	correct	things.

A	terminal-based	command	may	also	be	helpful	but	is	a	bit	difficult	to	read.

3.3.2	SWAGGER-UI

Swagger	comes	with	a	convenient	UI	to	invoke	REST	API	calls	using	the	Web
browser	rather	than	relying	on	the	curl	commands.

Once	 the	request	and	response	definitions	are	correctly	specified,	you	can	start
the	server	by,

Then	 the	 UI	 would	 also	 be	 spawned	 under	 the	 service	 URL	 http://[service
url]/ui/

Example:	http://localhost:8080/cloudmesh/ui/

3.3.3	MOCK	SERVICE

In	some	cases,	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case,	it	is	useful	to	run	a	mock
service.	You	can	invoke	such	a	service	with

make	demo

$	connexion	run	cpu.yaml	--stub	--debug

$	python	server.py

$	connexion	run	cpu.yaml	--mock=all	-v

https://editor.swagger.io/
http://localhost:8080/cloudmesh/ui/

3.3.4	EXERCISE

OpenAPI.Conexion.1:

Modify	 the	makefile,	 so	 it	also	works	on	ubuntu,	but	do	not	disable
the	ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on
the	 OS.	 You	 can	 look	 at	 the	 makefiles	 that	 create	 this	 book	 as	 an
example.	Find	alternatives	to	starting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile,	 so	 it	 also	 works	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	PowerShell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	GitBash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	compute	service	interfacing	with	AWS,	Azure,	Google	or
OpenStack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
GitHub,	iCloud,	FTP,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	 and	 then	 implement	 it	 for	 different	 providers.	 The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so

that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	Tornado	so	the	service	could	run	in	production.

4	REST	SPECIFICATIONS

4.1	TASK	4	–	GENERALIZED	REST	SERVICE	SPECIFICATIONS
☁�
Based	 on	 the	 lessons	 from	 the	 exposure	 to	 the	 community,	 we	 have	 received
contributions	 for	 the	 definition	 of	 REST	 services	 addressing	 database	 access,
virtual	directories,	and	map-reduce	as	follows:

A	 database	 access	 with	 an	 example	 to	 AWS	 Redshift
https://github.com/cloudmesh/cloudmesh-
redshift/blob/master/cloudmesh/redshift/openapi/redshift.yaml

Virtual	 Directory	 https://github.com/cloudmesh/cloudmesh-
storage/blob/master/cloudmesh/vdir/openapi/vdir.yaml

Map/Reduce	 with	 an	 example	 of	 using	 AWS	 emr
https://github.com/cloudmesh/cloudmesh-
emr/blob/master/cloudmesh/emr/openapi/emr.yaml

Due	 to	 the	 time	 frame	 these	specifications	were	developed	and	OpenAPI	 tools
not	yet	working	vor	OpenAPI	v3	the	specifications	are	provided	in	OPenAPI	v2.
A	future	activity	could	include	converting	them	to	OpenAPI	v3.

The	specifications	are	included	as	an	example	next.

4.2	AMAZON	REDSHIFT	OPENAPI	SPECIFICATION	☁�
swagger:	"2.0"

info:

		description:	"This	is	an	OpenAPI	for	Amazon	RedShift"

		version:	"1.0.0"

		title:	"AWS	RedShift"

		termsOfService:	"IU"

		contact:

				email:	"joshish@iu.edu"

		license:

				name:	"Apache	2.0"

				url:	"http://www.apache.org/licenses/LICENSE-2.0.html"

host:	"localhost:8080"

basePath:	"/cloudmesh/redshift/v1"

tags:

-	name:	"cluster"

		description:	"RedShift	Clusters"

https://github.com/cloudmesh/cloudmesh-redshift/blob/master/cloudmesh/redshift/openapi/redshift.yaml
https://github.com/cloudmesh/cloudmesh-storage/blob/master/cloudmesh/vdir/openapi/vdir.yaml
https://github.com/cloudmesh/cloudmesh-emr/blob/master/cloudmesh/emr/openapi/emr.yaml

		externalDocs:

				description:	"Get	information	and	operate	on	Clusters"

				url:	"http://swagger.io"

schemes:

-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/clusters:

				get:

						tags:

						-	"cluster"

						summary:	"Describe	all	clusters"

						description:	"Detailed	description	of	all	cluster	attributes"

						operationId:	"cloudmesh.redshift.Provider.describe_clusters"

						produces:

						-	"application/json"

						responses:

								200:

										description:	"successfully	listed	clusters"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

								400:

										description:	"Invalid	status	value"

		/cluster/{clusterId}:

				get:

						tags:

						-	"cluster"

						summary:	"Describe	cluster	by	ID"

						description:	"Returns	a	single	cluster	description"

						operationId:	"cloudmesh.redshift.Provider.describe_cluster"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster"

								required:	true

								type:	"string"

						responses:

								200:

										description:	"successfully	listed	cluster"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

								400:

										description:	"Invalid	ID	supplied"

								404:

										description:	"Cluster	not	found"

				post:

						tags:

						-	"cluster"

						summary:	"Creates	a	cluster"

						description:	""

						operationId:	"cloudmesh.redshift.Provider.create_multi_node_cluster"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	be	created"

								required:	true

								type:	"string"

						-	name:	"dbName"

								in:	"query"

								description:	"Name	of	the	DB"

								required:	true

								type:	"string"

						-	name:	"masterUserName"

								in:	"query"

								description:	"Master	user	name"

								required:	true

								type:	"string"

						-	name:	"passWord"

								in:	"query"

								description:	"Master	user	password"

								required:	true

								type:	"string"

						-	name:	"nodeType"

								in:	"query"

								description:	"Type	of	the	node	of	the	cluster"

								type:	"string"

								default:	'dc2.large'

						-	name:	"clusterType"

								in:	"query"

								description:	"Type	of	the	cluster"

								type:	"string"

								default:	'multi-node'

						-	name:	"nodeCount"

								in:	"query"

								description:	"Count	of	nodes	in	cluster"

								type:	"number"

								default:	2

						responses:

								405:

										description:	"Invalid	input"

				delete:

						tags:

						-	"cluster"

						summary:	"Deletes	a	cluster"

						description:	"Delete	a	cluster"

						operationId:	"cloudmesh.redshift.Provider.delete_cluster"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								required:	true

								type:	"string"

						responses:

								400:

										description:	"Invalid	ID	supplied"

								404:

										description:	"Cluster	not	found"

		/cluster/{clusterId}/resize:

				patch:

						tags:

						-	"cluster"

						summary:	"Increases	cluster	nodes"

						description:	""

						operationId:	"cloudmesh.redshift.Provider.resize_cluster_to_multi_node"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	resize"

								required:	true

								type:	"string"

						-	name:	"clusterType"

								in:	"query"

								description:	"Type	of	the	cluster"

								required:	false

								type:	"string"

								default:	"multi-node"

						-	name:	"nodeCount"

								in:	"query"

								description:	"Count	of	nodes	to	resize	cluster	to"

								required:	false

								type:	"number"

								default:	2

						-	name:	"nodeType"

								in:	"query"

								description:	"Type	of	nodes	"

								required:	false

								type:	"string"

								default:	'dc2.large'

						responses:

								200:

										description:	"successful	operation"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/changenodetype:

				patch:

						tags:

						-	"cluster"

						summary:	"Change		node	type"

						description:	""

						operationId:	"cloudmesh.redshift.Provider.resize_cluster_node_types"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	update"

								required:	true

								type:	"string"

						-	name:	"clusterType"

								in:	"query"

								description:	"Type	of	the	cluster"

								required:	true

								type:	"string"

						-	name:	"nodeType"

								in:	"query"

								description:	"Type	of	the	node"

								required:	false

								type:	"string"

								default:	'dc2.large'

						responses:

								200:

										description:	"successful	operation"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/rename:

				patch:

						tags:

						-	"cluster"

						summary:	"Rename	cluster"

						description:	"Rename	the	cluster"

						operationId:	"cloudmesh.redshift.Provider.rename_cluster"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	rename"

								required:	true

								type:	"string"

						-	name:	"newId"

								in:	"query"

								description:	"New	ID	for	the	cluster"

								required:	true

								type:	"string"

						responses:

								200:

										description:	"successful	operation"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/changepassword:

				patch:

						tags:

						-	"cluster"

						summary:	"Change	master	password"

						description:	"Change	the	password	for	the	cluster"

						operationId:	"cloudmesh.redshift.Provider.modify_cluster"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	update"

								required:	true

								type:	"string"

						-	name:	"newPass"

								in:	"query"

								description:	"New	Password"

								required:	true

								type:	"string"

						responses:

								200:

										description:	"successfully	change	password"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/allowaccess:

				patch:

						tags:

						-	"cluster"

						summary:	"Allow	external	access	to	cluster"

						description:	"Allow	external	programs	(eg	Python)	access	to	the	Redshift	cluster	for	queries"

						operationId:	"cloudmesh.redshift.Provider.allow_access"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	to	allow	access	to"

								required:	true

								type:	"string"

						responses:

								200:

										description:	"successfully	allowed	access"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/runDDL:

				patch:

						tags:

						-	"cluster"

						summary:	"Runs	DDL	on	cluster"

						description:	"Run	SQL	Statements	like	CREATE	TABLE,	ALTER	TABLE,	DROP	TABLE	on	the	database"

						operationId:	"cloudmesh.redshift.Provider.runddl"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	"

								required:	true

								type:	"string"

						-	name:	"dbName"

								in:	"query"

								description:	"DB	Name"

								required:	true

								type:	string

						-	name:	"host"

								in:	"query"

								description:	"Host	name"

								required:	true

								type:	"string"

						-	name:	"port"

								in:	"query"

								description:	"Port	number"

								required:	false

								type:	"integer"

								default:	5439

						-	name:	"userName"

								in:	"query"

								description:	"User	name"

								required:	true

								type:	"string"

						-	name:	"passWord"

								in:	"query"

								description:	"Password"

								required:	true

								type:	"string"

						-	name:	"sql_file_contents"

								in:	"query"

								description:	"Contents	of	an	SQL	file"

								required:	true

								type:	"string"

								format:	base64

						responses:

								200:

										description:	"successfully	ran	the	DDL	statements"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/runDML:

				patch:

						tags:

						-	"cluster"

						summary:	"Runs	DML	on	cluster"

						description:	"Run	SQL	Statements	like	INSERT,	UPDATE,	DELETE	for	data	in	the	database"

						operationId:	"cloudmesh.redshift.Provider.rundml"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	"

								required:	true

								type:	"string"

						-	name:	"dbName"

								in:	"query"

								description:	"DB	Name"

								required:	true

								type:	string

						-	name:	"host"

								in:	"query"

								description:	"Host	name"

								required:	true

								type:	"string"

						-	name:	"port"

								in:	"query"

								description:	"Port	number"

								required:	false

								type:	"integer"

								default:	5439

						-	name:	"userName"

								in:	"query"

								description:	"User	name"

								required:	true

								type:	"string"

						-	name:	"passWord"

								in:	"query"

								description:	"Password"

								required:	true

								type:	"string"

						-	name:	"sql_file_contents"

								in:	"query"

								description:	"Contents	of	an	SQL	file"

								required:	true

								type:	"string"

								format:	base64

						responses:

								200:

										description:	"successfully	ran	the	DML	file"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

		/cluster/{clusterId}/runQuery:

				patch:

						tags:

						-	"cluster"

						summary:	"Runs	a	query	on	the	cluster"

						description:	"Run	SQL	SELECT	Statement"

						operationId:	"cloudmesh.redshift.Provider.runselectquery_text"

						produces:

						-	"application/json"

						parameters:

						-	name:	"clusterId"

								in:	"path"

								description:	"ID	of	cluster	"

								required:	true

								type:	"string"

						-	name:	"dbName"

								in:	"query"

								description:	"DB	Name"

								required:	true

								type:	string

						-	name:	"host"

								in:	"query"

								description:	"Host	name"

								required:	true

								type:	"string"

						-	name:	"port"

								in:	"query"

								description:	"Port	number"

								required:	false

								type:	"integer"

								default:	5439

						-	name:	"userName"

								in:	"query"

								description:	"User	name"

								required:	true

								type:	"string"

						-	name:	"passWord"

								in:	"query"

								description:	"Password"

								required:	true

								type:	"string"

						-	name:	"queryText"

								in:	"query"

								description:	"SQL	query"

								required:	true

								type:	"string"

								format:	base64

4.3	VIRTUAL	DIRECTORY	☁�

						responses:

								200:

										description:	"successfully	run	the	query"

										schema:

												$ref:	"#/definitions/RedShiftCluster"

definitions:

		RedShiftCluster:

				type:	"object"

				required:

				-	"clusterId"

				properties:

						clusterId:

								type:	"string"

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"vdir"

		description:	"A	service	for	cloudmesh	virtual	directory"	

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"cloudmesh	virtual	directory	REST	Service"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/cloudmesh"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/mkdir:

				post:

						tags:

								-	VDIR

						operationId:	vdir_openapi.mkdir

						description:	"Returns	new	directory"

						parameters:

								-	in:	body

										name:	params

										description:	"Provide	the	directory	name	in	body	of	the	request"

										schema:

												$ref:	"#/definitions/PUT"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Makes	new	directory"

		/cd:

				get:

						tags:

								-	VDIR

						operationId:	vdir_openapi.cd

						description:	"Returns	list	of	endpoints	in	the	specified	directory"

						parameters:

								-	in:	query

										name:	dir

										description:	"Provide	the	directory	name	in	body	of	the	request"

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"navigate	to	directory"

										schema:

												$ref:	"#/definitions/LIST"

		/ls:

				get:

						tags:

								-	VDIR

						operationId:	vdir_openapi.ls

						description:	"Returns	list	of	documents	in	the	specified	directory"

						parameters:

								-	in:	query

										name:	dir

										description:	"Specify	directory	to	list	contents	of"

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"list	documents"

										schema:

												$ref:	"#/definitions/LIST"

		/add:

				post:

						tags:

								-	VDIR

						operationId:	vdir_openapi.add

						description:	"Returns	new	document"

						parameters:

								-	in:	body

										name:	params

										description:	"Provide	the	location	of	the	file	and	link	in	the	body	of	the	request"

										schema:

												$ref:	"#/definitions/ADD"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"add	file	link"

		/delete:

				get:

						tags:

								-	VDIR

						operationId:	vdir_openapi.delete

						description:	"Returns	list	of	documents	in	the	specified	directory"

						parameters:

								-	in:	query

										name:	dir_or_name

										description:	"Provide	the	directory	or	link	name	in	body	of	

																								the	request"

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"delete	links	or	directories"

										schema:

												$ref:	"#/definitions/LIST"

		/status:

				get:

						tags:

								-	VDIR

						operationId:	vdir_openapi.status

						description:	"Returns	specified	document"

						parameters:

								-	in:	query

										name:	dir_or_name

										description:	"Provide	the	directory	or	link	name	in	body	of	

																								the	request"

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"get	status	of	link	or	directory"

										schema:

												$ref:	"#/definitions/LIST"

		/get:

				get:

						tags:

								-	VDIR

						operationId:	vdir_openapi.get

						description:	"Returns	specified	file"

						parameters:

								-	in:	query

										name:	name

										description:	"Provide	the	link	name	in	body	of	the	request"

4.4	ELASTIC	MAP	REDUCE	☁�

										type:	string

										required:	true

								-	in:	query

										name:	destination

										description:	"Provide	the	destination	directory	name	

																								in	the	body	of	the	request"

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"download	the	specified	file"

										schema:

												$ref:	"#/definitions/LIST"

definitions:

		PUT:

				type:	"object"

				required:

						-	"dir"

				properties:

						dir:

								type:	"string"

		LIST:

				type:	"object"

				required:

						-	"results"

				properties:

						results:

								type:	"string"

		ADD:

				type:	"object"

				required:

						-	"endpoint"

						-	"dir_and_name"

				properties:

						endpoint:

								type:	"string"

						dir_and_name:

								type:	"string"

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"Amazon	AWS	EMR"

		description:	"An	OpenAPI	Service	to	manage	AWS	EMR	clusters."

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	""

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/list_clusters:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.list_clusters

						description:	"Returns	details	of	clusters	visible	to	this	account."

						parameters:

								-	name:	status

										description:	"The	status	of	the	cluster	to	search	for."

										in:	query

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Listing"

										schema:

												$ref:	"#/definitions/emr"

		/list_instances:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.list_instances

						description:	"Returns	instance	details	for	a	given	cluster,	status,	

																				and	type."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	list	instances	for."

										in:	query

										type:	string

										required:	true

								-	name:	status

										description:	"The	state	of	instance	to	search	for."

										in:	query

										type:	string

										required:	false

								-	name:	type

										description:	"The	type	of	instance	to	search	for."

										in:	query

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Instance	Listing"

										schema:

												$ref:	"#/definitions/emr"

		/list_steps:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.list_steps

						description:	"Returns	details	of	the	steps	running	on	the	cluster."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	list	steps	for."

										in:	query

										type:	string

										required:	true

								-	name:	status

										description:	"The	status	of	the	step	to	search	for."

										in:	query

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Step	Listing"

										schema:

												$ref:	"#/definitions/emr"

		/describe:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.describe

						description:	"Describes	a	cluster."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	list	instances	for."

										in:	query

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Description"

										schema:

												$ref:	"#/definitions/emr"

		/stop:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.stop

						description:	"Stops	a	cluster."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	stop."

										in:	query

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Stopped"

										schema:

												$ref:	"#/definitions/emr"

		/start:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.start

						description:	"Stops	a	cluster."

						parameters:

								-	name:	name

										description:	"The	name	of	the	cluster	to	start."

										in:	query

										type:	string

										required:	true

								-	name:	count

										description:	"The	number	of	servers	to	use	for	the	cluster."

										in:	query

										type:	string

										required:	true

								-	name:	master

										description:	"The	instance	type	to	use	for	the	Master	node."

										in:	query

										type:	string

										required:	false

								-	name:	node

										description:	"The	instance	type	to	use	for	the	Worker	nodes."

										in:	query

										type:	string

										required:	false

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Started"

										schema:

												$ref:	"#/definitions/emr"

		/upload:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.upload

						description:	"Upload	a	file	to	an	S3	bucket	for	processing."

						parameters:

								-	name:	file

										description:	"The	filename	to	upload	from	the	REST	server."

										in:	query

										type:	string

										required:	true

								-	name:	bucket

										description:	"The	bucket	to	upload	the	file	to."

										in:	query

										type:	string

										required:	true

								-	name:	bucketname

										description:	"The	name	to	save	the	file	as	in	the	bucket."

										in:	query

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Started"

										schema:

												$ref:	"#/definitions/emr"

		/copy:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.copy

						description:	"Copy	a	file	from	an	s3	bucket	to	the	master	node's	

																				hadoop	directory."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	copy	to."

										in:	query

										type:	string

										required:	true

								-	name:	bucket

										description:	"The	bucket	to	use	as	the	source."

										in:	query

										type:	string

										required:	true

								-	name:	bucketname

										description:	"The	name	to	bucket	object	to	copy."

										in:	query

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Started"

										schema:

												$ref:	"#/definitions/emr"

		/run:

				get:

						operationId:	cloudmesh.emr.openapi.cloudmesh.emr.run

						description:	"Submit	a	file	to	Spark."

						parameters:

								-	name:	cluster

										description:	"The	ClusterID	to	use."

										in:	query

										type:	string

										required:	true

								-	name:	bucket

										description:	"The	bucket	to	use	as	the	source."

										in:	query

										type:	string

										required:	true

								-	name:	bucketname

										description:	"The	name	of	the	program	file	to	run."

										in:	query

										type:	string

										required:	true

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Cluster	Started"

										schema:

												$ref:	"#/definitions/emr"

definitions:

		emr:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

								type:	"string"

5	APPLICATIONS

5.1	TASK	5	–	APPLICATION	EXAMPLES	☁�
It	 is	 crucial	 to	verify	 the	applicability	of	 the	general	 framework,	while	we	 test
the	reusability	of	the	proposed	software	system.	We	show	this	on	multiple	well-
understood	 applications	 identified	 by	 such	 as	 the	 NIST	 fingerprint	 and	 face
detection	 examples.	 Following	 these	 initial	 verification	 and	 demonstration
projects,	 we	 expand	 usability	 studies	 into	 IaaS,	 PaaS,	 and	 other	 applications.
This	 is	 fostered	 in	 tight	 collaboration	 with	 our	 educational	 dissemination
activities,	 as	 described	 next.	 The	 importance	 of	 building	 a	 tight	 integration
between	education	and	specification	is	that	students	provided	a	meaningful	and
critical	 step	 in	 the	 verification	 and	 fine-tuning	 of	 the	 development	 and
documentation	activities.

5.2	S-CONE	CLASSIFICATION	USING	REST	SERVICES	AND
MACHINE	LEARNING	☁�
Brandon	Fischer,	Ryan	Danehy
bfisch9@iu.edu,	rdanehy@iu.edu
Indiana	University	Bloomington
hid:	sp19-222-89	sp19-222-102
github:	☁�
code:	☁�

Keywords:	 S-cones,	 Scikit,	 Support	 Vect	 Machine,	 Neural	 Network,
WebPlotViz,	 ISOS	 (Inner	 Segment	 -	 Outer	 Segment	 junction),	 Cone	 Outer
segment	tip	(COST).

5.2.1	ABSTRACT

We	 worked	 in	 partnership	 with	 Dr.	 Don	 Miller’s	 lab	 from	 the	 IU	 School	 of
Optometry	 to	 create	 a	 binary	 classifier	 which	 is	 trained	 to	 differentiate	 (and

https://github.com/cloudmesh-community/sp19-222-89/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-89/tree/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-89/tree/master/project-code

generate	 a	 count	 of)	 S-cones	 from	L	 and	M	 cones	 in	 3D	 retinal	 imaging.	We
deployed	an	RBF-kernel	SVM	to	classify	S-cones	vs	non-S-cones.	This	project
has	 clinical	 significance	 in	 the	 tracking	 of	 progression	 of	 the	 disease	Retinitis
Pigmentosa	 (RP).	 In	 RP,	 S-cones	 can	 be	 seen	 migrating	 from	 their	 natural
positions,	and	eventually	disappearing	entirely	in	retinal	scans.	Our	service	could
be	 extended	 from	 purely	 classifying/counting	 S-cones	 to	 tracking	 the	 rate	 of
their	 movement	 and	 determining	 the	 progression/severity	 of	 the	 disease	 in	 a
given	patient.

5.2.2	INTRODUCTION

Cones	or	Cone	cells	are	photoreceptor	cells	 in	 the	retinas	of	humans.	They	are
responsible	 for	 color	 vison	 and	work	 best	 in	 bright	 lights.	 S-cone	 cells	 differ
from	M-cones	and	L-cones	based	on	the	light	wavelengths	they	are	senstive	to.
For	 example	 S-cones	 are	 sensitive	 to	 short-wavelengths,	M-cones	 to	medium-
wavelengths,	 and	 L-cones	 to	 Long-wavelengths	 [5].	 Short-wavelengths
correspond	with	‘blue’,	medium	with	‘green’,	and	long	with	‘red’,	therefore	it	is
believed	that	the	study	of	these	cones	could	lead	to	new	insights	into	dieseases
such	as	red-green	colorblindness.

Figure	1:	Spectrum	of	Wavlengths

Caption:	Color	vision.	The	absorption	spectra	of	 the	four	photopigments	 in	 the
normal	human	retina.	The	solid	curves	 indicate	 the	 three	kinds	of	cone	opsins;
the	dashed	curve	shows	rod	rhodopsin	for	comparison.	Absorbance	is	defined	as
the	log	value	of	the	intensity	of	incident	light	divided	by	intensity	of	transmitted
light	[5].

Individual	 cones	 are	 entirely	 color	 blind	 in	 that	 their	 response	 is	 simply	 a
reflection	of	the	number	of	photons	they	capture,	regardless	of	the	wavelength	of
the	 photon.	 Therefore	 it	 is	 impossible	 to	 determine	 why	 a	 change	 in	 the
effectiveness	of	a	particular	cone	occurred.	This	question	can	only	be	resolved
by	 comparing	 the	 activity	 in	 different	 classes	 of	 cones.	 Comparisons	 of	 the
responses	 of	 individual	 cone	 cells,	 and	 cells	 at	 higher	 levels	 in	 the	 visual
pathway	are	clearly	involved	in	how	the	visual	system	extracts	color	information

from	 spectral	 stimuli.	 However,	 understanding	 of	 the	 neural	 mechanisms	 that
underlie	color	perception	has	been	elusive	to	the	scientific	community	Figure	1.

“This	diagram	was	produced	based	on	histological	sections	from	a	human	eye	to
determine	the	density	of	the	cones.	The	diagram	represents	an	area	of	about	1°	of
visual	 angle.	 The	 number	 of	 S-cones	 was	 set	 to	 7%	 based	 on	 estimates	 from
previous	studies.	The	L-cone:M-cone	 ratio	was	set	 to	1.5.	This	 is	a	 reasonable
number	considering	that	recent	studies	have	shown	wide	ranges	of	cone	ratios	in
people	with	normal	color	vision.	 In	 the	central	 fovea	an	area	of	approximately
0.34°	is	S-cone	free.	The	S-cones	are	semi-regularly	distributed	and	the	M-	and
L-cones	 are	 randomly	 distributed.	Throughout	 the	whole	 retina	 the	 ratio	 of	L-
and	M-	cones	to	S-cones	is	about	100:1	[6].”

There	are	two	main	reflection	sites	inside	the	cone	photoreceptor	cells	that	line
the	back	of	 the	eye.	The	first	one	occurs	at	what	 is	called	 the	 inner	segment	–
outer	segment	junction	(ISOS)	and	the	second	one	(which	occurs	directly	behind
the	first	one)	occurs	at	what	is	called	the	cone	outer	segment	tip	(COST).	Cones
can	be	classfied	by	the	comparison	of	the	inner	segment	length	vs	outer	segment
length.	For	example,	histologically	S-cones	have	a	 longer	 inner	 segment	and	a
shorter	 outer	 segment.	 The	 ultimate	 goal	 of	 this	 project	 was	 to	 design	 an
effective	and	 fast	method	of	classification	of	S-cones,	using	REST	Services	 to
facilitate	user	interaction	with	the	model.

5.2.3	DATA

Datasets	were	provided	by	Dr.	Miller’s	 lab	which	 included	 the	3D	coordinates
and	 aperture	 size	 of	 each	 cone	 detected	 within	 the	 retinal	 scan.	 Using	 this
information,	 we	were	 able	 to	 differentiate	 the	 S-cones	 from	 the	 others	 due	 to
their	deeper	position	and	wider	 aperture	 compared	 to	 the	other	 cell	 types.	Our
starting	dataset	 includes	 information	from	the	 images	of	 three	patients’	 retinas,
with	a	mix	of	healthy	and	colorblind	individuals.	Additional	data	was	collected
as	 needed.	 The	 data	 provided	was	 delivered	 in	 a	 fashion	 to	 not	 jeopadize	 the
patients	anonymity	nor	were	we	given	any	personal	data	that	could	or	would	put
a	patient’s	privacy	in	concern.

After	 the	 initial	 model	 was	 trained,	 unlabeled	 data	 is	 given	 a	 classification
through	a	rest	service,	and	the	count	and	locations	of	S-cones	was	returned	via

another	rest	service.	The	service	also	allows	the	retraining	of	the	model	on	new
datasets,	and	outputs	the	corresponding	metrics	on	the	newly	trained	model.	This
allows	the	model	to	be	updated	and	re-trained	as	more	data	becomes	available.

Our	 data	 includes	 eight	 features:	 X-Coordinate	 of	 cone	 (Coord_X),	 Y
Coordinate	 of	 cone	 (Coord_Y),Retina	 Depth	 location	 of	 Inner-	 Outer
Segment(ISOS_Z),	 X	 Coordinate	 of	 ISOS	 (ISOS_size_X),	 Y	 Coordinate	 of
ISOS	(ISOS_size_Y),	Retina	Depth	location	of	COST	(COST_Z),	X	Coordinate
of	COST	(COST_size_X),	and	Y	Coordinate	of	COST	(COST_size_Y).	These
features	 were	 extracted	 from	 3D	 imaging	 of	 the	 retinal	 hence	 the	 three
dimensional	parameter	 types.	 ISOS_z	is	 the	retinal	depth	 location	of	ISOS	and
COST_z	is	the	retinal	depth	location	of	COST.

5.2.3.1	Preprocessing

Our	 raw	 data	 had	 some	 observations	 that	 were	 unknown	 or	 missing	 certain
datapoints,	 and	 as	 such	 were	 marked	 “Nan”	 in	 the	 original	 dataset.	 We
preproccessed	 the	data	 in	order	 to	exclude	 feature	vectors	which	 included	Nan
for	any	feature	value.	The	preproccessing	that	we	performed	on	the	data	can	be
seen	in	the	read_data.py	file.	Machine	learning	models	can	be	very	sensitive	to
scaling	 and	 in	 order	 to	 prevent	 this	 we	 normalized	 the	 data.	 Normalization
rescales	 the	 data	 to	 be	 in	 the	 range	 of	 0	 to	 1,	 thus	 eliminating	 any	 possible
feature	scaling	within	our	data.	We	performed	normalization	on	our	data	using
Scikit	learn’s	preprocessing.normalize()	function.	This	function	scales	the	input
indivudally	to	unit	norms	(vector	length).	In	order	to	guarantee	the	quality	of	our
data	 before	 training	 a	 model,	 we	 standardized	 our	 data.	 Standardization
transforms	 data	 to	 have	 a	 mean	 of	 zero	 and	 standard	 deviation	 of	 1.
Standardization	 was	 performed	 by	 using	 scikit	 learn’s	 StandardScaler().	 The
function	first_model	and	retrain_model	in	model.py	show	this	normalization	and
standardization.

5.2.3.2	Visualization

We	visualized	our	data	using	WebPlotViz	which	 results	 can	be	 seen	using	 the
following	 link.	 https://spidal-
gw.dsc.soic.indiana.edu/public/groupdashboard/E222.	 From	 the	 WebPlotViz
visualizations	 it	can	be	noted	that	 the	data	 is	not	clearly	seperated	into	clusters

nor	 in	 a	 regular	 shape.	 It	 also	 imporant	 to	 notice	 how	 there	 is	 no	 clear
distiniction	on	which	features	are	weighted	heaviler	than	others	in	classifying	S-
cone	 from	M	 and	L-cones.	However,	 histological	 studies	 have	 shown	 that	 the
biggest	differentiation	betwen	the	different	cones	types	is	the	difference	between
ISOS_Z	 -	 COST_Z	 [7].	 This	 difference	 siginifes	 the	 physical	 length	 of	 an
important	component	of	the	cone	photoreceptors.	In	one	of	the	visualizations	we
plotted	X_coordinate	vs	Y-coordinate	vs	 (COST_Z-	 ISOS_Z).	 In	 this	plot	 it	 is
not	glaringly	obvious	that	(COST_Z-	ISOS_Z)	is	the	most	imporant	feature,	but
there	 does	 seem	 to	 be	 a	 noticeable	 correlation.	 The	 lack	 of	 an	 obviously
dominant	feature	led	us	to	the	conclusion	that	for	our	model	to	train	the	best	no
weights	 should	 be	 applied	 (Not	 sure	 that’s	 accurate,	 I	 think	DNN	will	 always
give	weights)

5.2.4	MODEL	DISCUSSION

In	 our	 final	 project	 we	 decided	 to	 use	 a	 neural	 network	 using	 scikit	 learn’s
MLPClassifier().	We	had	several	reason	for	picking	a	neural	network	model,	one
being	the	fact	that	it	is	supervised	learning.	Supervised	learning	make	sense	for
our	 project	 because	 in	 our	 training	 data	 we	 were	 given	 labels	 for	 every	 cell
observed.	Supervised	learning	also	made	sense	given	that	our	goal	was	to	predict
the	 type	 of	 cone	 for	 a	 given	 cell,	 and	 making	 predictions	 is	 usually	 the	 goal
behind	 supervised	 learning	 algorithms.	Additionally,	 neural	 networks	 are	 ideal
for	 solving	 non-linear	 classification	 problems,	which	 is	 precisely	what	we	 are
trying	to	solve	[8].

5.2.4.1	Failures

We	started	out	 trying	to	use	a	support	vector	machine	algorithm	(SVM)	as	our
model	of	choice,	but	several	problems	became	evident	while	trying	to	implement
the	SVM.	We	originally	choose	Scikit’s	svm.SVC()	algorithm,	but	after	testing	it
became	apparent	the	model	was	not	accurate	at	all	averaging	an	F1	score	below
.3.	 We	 then	 experimented	 with	 altering	 the	 parameters	 of	 the	 algorithm,
including	 changing	 from	 a	 linear	 to	 non-linear	 SVM	 model.	 We	 found	 that
changing	 the	 kernel	 to	 ‘RBF’	 produced	 an	 F1	 score	 of	 1.0.	 This	makes	 sense
given	 that	 our	 data	 is	 grouped	 in	 a	 nonlinear	 way	 and	 ‘RBF’	 are	 used	 for
nonlinear	solutions.

Figure	2:	RBF	Kernel	example

However,	an	F1	score	of	1.0	is	a	possible	symptom	of	an	over-fitting	problem.
Over-fitting	is	when	an	algorithm	matches	so	perfectly	to	the	training	data	that
the	model	does	not	generalize	well	to	classification	of	additional	datasets.

Figure	3:	Overfitting	example

To	 determine	 whether	 there	 is	 overfitting	 or	 not	 we	 decided	 to	 decrease	 the
amount	of	data	used	for	training.	Decreasing	the	amount	of	data	used	for	training
should	 only	 slightly	 decrease	 the	 performance	 of	 the	 model	 unless	 there	 is

overfitting.	If	there	was	overfitting	then	they	would	be	a	drastic	difference	since
they	would	be	less	data	to	fit	perfectly	too.	We	trained	with	roughly	60%	of	the
data	 rather	 than	 80%.	 The	 new	model	 that	 was	 trained	 with	 60%	 of	 the	 data
performed	 horribly,	 confirming	 the	 overfitting	 problem.	 Thus	 we	 decided	 to
move	on	to	the	implementation	of	a	neural	network.

5.2.4.2	Activation	Function

When	 deciding	 to	 implement	 a	 multi-layer	 perceptron	 (neural	 network)	 it	 is
imporant	 to	 consider	 and	 analzye	 what	 activation	 function	 will	 work	 best	 for
your	 data	 solution.	 The	 types	 of	 activation	 functions	 have	 very	 important
influences	on	the	networks’	learning	speeds,	classification	correct	rates	and	non-
linear	mapping	precision.	Activation	functions	determine	the	output	of	a	neural
network.	The	function	is	attached	to	each	neuron	in	the	network,	and	determines
whether	it	should	be	activated	(“fired”)	or	not,	based	on	whether	each	neuron’s
input	 is	 relevant	 for	 the	 model’s	 prediction.	 Activation	 functions	 also	 help
normalize	the	output	of	each	neuron	to	a	range	between	1	and	0	or	between	-1
and	 1.	 An	 additional	 aspect	 of	 activation	 functions	 is	 that	 they	 must	 be
computationally	 efficient	because	 they	are	 calculated	across	 thousands	or	 even
millions	 of	 neurons	 for	 each	 data	 sample.	 Modern	 neural	 networks	 use	 a
technique	called	backpropagation	to	train	the	model,	which	places	an	increased
computational	 strain	 on	 the	 activation	 function,	 and	 its	 derivative	 function.
Backpropagation	 is	 an	 algorithm	 which	 traces	 back	 from	 the	 output	 of	 the
model,	 through	 the	 different	 neurons	 which	 were	 involved	 in	 generating	 that
output,	 back	 to	 the	 original	 weight	 applied	 to	 each	 neuron.	 Backpropagation
suggests	an	optimal	weight	for	each	neuron,	which	results	in	the	most	accurate
prediction	[9].

5.2.4.3	Decision

In	order	to	decide	what	activation	function	fit	our	model	best	we	experimented
with	a	few	activation	functions.	Firstly	we	experimented	with	a	logistics	function
which	performed	poorly	averaging	an	F1	score	around	 .5.	Next	we	 tried	using
the	RELU	 function	which	 performed	 significantly	 better	 averaging	 a	 F1	 score
around	 .9.	 However	 the	 best	 was	 the	 Hyperbolic	 Tangent	 (Tanh),	 which
averaged	 f1	 score	 around	 .95.	 The	 advantages	 tanh	 provides	 is	 that	 its	 zero
centered	 meaning	 it	 makes	 it	 easier	 to	 model	 strongly	 positive,	 negative,	 or

neutral	 inputs.	 As	 previosuly	 mentioned	 our	 input	 (features)	 are	 very	 neutral
making	this	activation	function	perfect	for	our	model	[9].

5.2.5	REST	SERVICE	IMPLEMENTATIONS

REST	is	an	abstraction	of	the	basic	HTTP	methods	(like	GET,	POST,	etc)	which
is	 used	 to	 build	APIs	 that	 behave	 in	 predictable	ways.	The	 basic	 behaviors	 of
REST	services	are	called	CRUD:	Create,	Read,	Update,	and	Delete	[10].	These
map	to	the	HTTP	methods	POST,	GET,	PUT,	and	DELETE,	respectively.	When
a	server	 is	 launched	that	 implements	REST	conventions,	 the	fields	of	 the	URL
submitted	 to	 the	 website	 will	 contain	 endpoints	 and/or	 parameters	 which	 are
used	to	specify	the	desired	behavior.

The	 interaction	between	client	and	server	 for	our	service	 in	particular	 involves
the	use	of	3	yaml	specified	endpoints:	/,	/app/run,	and	/app/retrain.	These	can	be
found	in	our	master.yaml	file.	The	‘/’	endpoint	is	a	simple	read	action	from	the
client,	and	a	rendered	html	page	with	information	about	our	service	is	returned	to
the	client.

The	/app/run	endpoint	specifies	another	read	action,	and	returns	a	rendered	html
template	 to	 the	client	which	will	allow	a	user	 to	upload	one	or	more	 .csv	 files
containing	 data	 which	 they	 want	 classified.	 When	 the	 user	 clicks	 the	 upload
button	on	this	page,	a	create	action	is	used	to	send	the	data	files	from	client	 to
server.	The	files	which	are	uploaded	are	then	run	through	the	model	to	have	their
S-cones	 counted,	 and	 then	 an	 html	 file	 containing	 feedback	 is	 dynamically
generated.	A	rendered	version	is	returned	to	the	client.

Similarly,	the	/app/retrain	endpoint	specifies	a	read	action	and	returns	a	rendered
file-upload	 html	 template	 to	 the	 client.	 The	 client	 user	 will	 upload	 files	 with
which	to	 train	a	new	model,	and	then	by	clicking	the	upload	button	they	again
generate	a	create	action.	These	uploaded	files	are	then	used	to	train	a	new	model,
which	 is	 created,	 saved,	 and	 tested.	 The	metrics	 calculated	 as	 a	 result	 of	 this
testing,	accuracy,	precision,	 recall,	and	F1	score,	are	dynamically	written	 to	an
html	file,	which	is	then	rendered	and	returned	to	the	client.

5.2.6	SPECIFICATION
swagger:	"2.0"

info:	

5.3	ROOKIE	FANTASY	FOOTBALL	POINT	PREDICTION	☁�
Andrew	Gotts,	Ethan	Japundza,	Brian	Schwantes
adgotts@iu.edu,	ejapundz@iu.edu,	bschwant@iu.edu
Indiana	University
hid:	sp19-222-94,	sp19-222-90,	sp19-222-92
github:	☁�
code:	☁�

Keywords:	KNN,	Fantasy	Football,	REST,	Docker,	Yaml

		version:	"0.0.1"

		title:	"cone	classifier"

		description:	"classify	cones	from	csv	data"

		termsOfService:	"http://swagger.io/terms/"

		contact:	

				name:	"Ryan	Danehy	and	Brandon	Fischer"

		license:	

				name:	"Apache"

host:	"localhost:4555"

consumes:

		-	"text/html"

produces:

		-	"text/html"

basePath:	"/app"

paths:

		/run:

				get:

						operationId:	scripts.uploadrun.display

						description:	"Displays	upload	file	page"

						responses:

								"200":

										description:	"Upload	page	displayed	successfully"

		/upload_file:

				post:

						operationId:	scripts.uploadrun.upload

						description:	"Generate	post	request	to	actually	upload	file"

						responses:

								"201":

										description:	"File	upload	successful"

		/retrain:

				get:

						operationId:	scripts.uploadrerun.display

						description:	"Displays	upload	new	training	file	page"

						responses:

								"200":

										description:	"Upload	page	displayed	successfully"

		/upload_file_retrain:

				post:

						operationId:	scripts.uploadrerun.upload

						description:	"Generate	post	request	to	actually	upload	file"

						responses:

								"201":

										description:	"File	upload	successful"

https://github.com/cloudmesh-community/sp19-222-90/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-90/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-90/tree/master/project-code

5.3.1	ABSTRACT

As	the	number	of	fantasy	football	players	increases	dramatically	every	year,	we
saw	 an	 opportunity	 to	 create	 a	 service	 that	 will	 help	 users	 draft	 better	 teams.
While	 NFL	 veterans	 have	 gameplay	 for	 fantasy	 enthusiasts	 to	 evaluate,
incoming	rookies	with	a	lack	of	professional	experience	make	it	difficult	for	fans
to	evaluate	whether	or	not	 their	 teams	picks	will	be	successful	 in	 the	NFL.	To
solve	 this	problem,	we	 implemented	 a	REST	service	 that	 gets	 an	 aggregate	of
combine	and	fantasy	football	data	from	Google-Drive.	Our	service	then	utilizes
the	K-Nearest	Neighbor	machine	learning	algorithm	on	our	data	sets,	outputting
our	projections	for	which	2019	NFL	Rookies	will	score	the	most	fantasy	football
points	based	on	their	metrics	from	the	combine.

5.3.2	INTRODUCTION

Who	should	be	the	top	pick	in	this	years	fantasy	football	draft?	This	is	a	question
that	has	plagued	fantasy	football	enthusiasts	since	its	creation	in	1962.	But	why
does	 it	 even	 matter,	 isn’t	 fantasy	 football	 just	 a	 game?	 According	 to	 Joris
Drayer,	 a	 professor	 at	 Temple	 University	 in	 Sports	Marketing	 and	 Analytics,
almost	30	million	Americans	and	Canadians	actively	participate	in	fantasy	sports
leagues	every	year.	Drayer	goes	on	to	discuss	the	economic	impact	that	fantasy
football	has	on	 the	 sports	 industry,	 estimating	 it	 to	be	nearly	$4.5	billion	 [11].
With	 such	 a	 large	 amount	 of	 people	 and	 money	 involved,	 the	 technologies
created	to	help	players	be	successful	are	in	a	position	to	revolutionize	the	fantasy
football	market.	Utilizing	the	power	of	machine	learning,	we	were	able	to	create
the	‘Rookie	Fantasy	Football	Point	Predictor’.	A	service	for	those	trying	to	make
an	educated	pick	on	rookie	players	with	no	professional	experience.

5.3.3	DATA	SET

Our	 project	 uses	 information	 from	 three	 data	 sets	 consisting	 of	 the	 2000-
2018_NFL_	 Combine	 statistics,	 the	 2019_NFL_Combine	 statistics	 for	 this
year’s	rookies,	and	the	2001-2018_Fantasy_Football	data	for	every	active	NFL
player.	These	datasets	include	six	combine	drills:

40-Yard	Dash:	Measures	a	player’s	explosion,	burst,	and	acceleration.
Three-Cone	Drill:	Highlights	 a	players	ability	 to	 shift	directions	at	 a	high

speed.
Shuttle	 Run:	 Demonstrates	 short	 area	 lateral	 quickness,	 and	 the	 speed	 at
which	a	player	can	change	directions.
Vertical	Jump:	Tests	for	lower	body	extension	and	power.
Broad	Jump:	Evaluates	an	athlete’s	lower-body	explosion,	and	lower-body
strength.
Bench	Press:	Demonstrates	a	players	strength	and	endurance.

From	these	drills	measurables	are	obtained	that	can	serve	as	a	predictor	for	the
rookies	 effectiveness	 in	 the	NFL.	For	 certain	positions,	 like	wide	 receiver,	 the
shuttle	 run	 is	 significant	 as	 this	 drill	 will	 often	 determine	 whether	 or	 not	 the
defender	is	able	to	get	separation	between	his	defender	at	the	line	of	scrimmage.
While	for	other	positions	like	quarterback,	the	shuttle	run	has	less	importance	as
they	are	rarely	making	quick	and	decisive	cuts	while	playing	in	NFL	games	[12].
Due	 to	 the	 difference	 in	 how	 each	 drill	 can	 serve	 as	 a	 predictor	 for	 different
positions,	 we	 found	 the	 best	 way	 to	 analyze	 the	 incoming	 rookies	 within	 the
2019_NFL_Combine	dataset	was	to	compare	their	performance	to	previous	NFL
players	within	the	2000-2018_NFL_Combine	dataset.	From	this	comparison,	our
goal	was	 to	 both	 rank	 and	predict	 the	 average	 fantasy	points-per-game	 for	 the
incoming	rookie	class	based	on	how	their	comparisons	performed	 in	 the	2001-
2018_Fantasy_Football	dataset.	We	found	the	best	way	to	make	this	correlation
was	 to	 employ	 the	 K-Nearest	 Neighbor	 machine	 learning	 algorithm	 for	 our
service.

5.3.4	KNN	ALGORITHM

The	 machine	 learning	 technique	 KNN	 (K-Nearest	 Neighbors)	 is	 a	 technique
often	 used	 for	 classification	 or	 linear	 regression	 predictive	 problems.	 The
algorithm	relies	on	 feature	 similarity,	or	 the	process	of	checking	how	an	 input
sample	will	resemble	the	training	set	[13].	Using	the	Euclidean	distance	formula,
KNN	calculates	which	features	of	the	input	sample	are	nearest	to	the	training	set.
Figure	4	is	a	graphical	illustration	of	this	process.

Figure	4:	Euclidean	distance	formula

The	Euclidean	distance	formula,	Equation	1,	is	used	within	KNN	to	calculate	the
distance	between	a	feature	of	the	input	data,	blue	helmet,	and	k	instances	of	that
same	 feature	within	 the	 training	 data,	 red	 helmets.	Choosing	 the	 value	 of	 k	 is
dependent	on	 the	 training	datasets	used	and	 the	desired	outcome.	Compared	 to
other	machine	learning	algorithms,	KNN	has	an	advantage	as	 it	does	not	make
assumptions	 about	 the	 data	 it	 uses,	 it	 is	 simple,	 highly	 effective,	 and	 it	 is
versatile.	However	to	its	disadvantage,	the	KNN	algorithm	requires	that	we	store
all	 of	 the	 training	 dataset,	 which	 will	 often	 cause	 the	 algorithm	 to	 be
computationally	expensive	and	slow	[13].

EuclideanDistance =√(x1 − x2)
2 + (y1 − y2)

2 (1)

Before	 our	 implementation	 of	 the	 KNN	 algorithm,	 we	 found	 that	 choosing	 a
value	of	three	to	represent	our	k	would	best	optimize	the	results	of	the	program.
In	the	python	file	k-nearest,	we	call	and	train	the	KNN	algorithm	with	the	NFL
combine	 results	 from	 the	 last	 18	 years.	 Using	 the	 incoming	 rookies
2019_NFL_Combine	 statistics	 as	 the	 input	 data,	 the	 program	 calculates	 the
Euclidean	distance	between	each	feature	of	 the	 input	data	and	the	accumulated
combine	 results	 of	 previous	 years.	 This	 calculation	 yields	 the	 three	 closest
veteran	players	 that	each	NFL	rookie	performed	the	most	similar	 to	during	 the
combine.	While	the	results	of	our	implementation	are	accurate	and	informative,

the	 speed	 disadvantage	 of	 the	 KNN	 algorithm	 becomes	 apparent	 within	 our
program.	Despite	making	 adjustments	 to	 speed	up	 the	 algorithm,	 such	 as	 only
running	KNN	on	the	instances	of	the	input	data	called	for	opposed	to	running	it
on	 all	 of	 the	 input	 data	 and	 filtering	 it	 afterward	 to	 get	 a	 tailored	 output,	 the
program	still	runs	slowly.	This	is	due	to	the	KNN	algorithm	requiring	us	to	store
the	entire	dataset	before	 it	 runs	computations	on	 it.	Despite	our	best	 efforts	of
optimization,	our	program	still	has	a	run	speed	of	about	five	seconds.

Another	 disadvantage	 of	 the	 KNN	 algorithm	 and	 other	 machine	 learning
techniques	 is	 their	 tendency	 to	 un-intentionally	 weight	 certain	 features	 of
datasets	 due	 to	 size	 and	 scale	 differences.	 To	 account	 for	 this,	 we	 have	 to
normalize	the	datasets	we	pass	into	the	algorithm,	creating	an	equal	‘weight’	for
the	 Euclidean	 distance	 to	 calculate.	 In	 Python	 using	 the	 PANDAS	 library,	 or
Python	Data	Analysis	Library,	 allows	us	 to	 do	 just	 that,	 and	 easily	 import	 the
csv’s	needed	to	execute	the	KNN	algorithm.

From	 this	 library	 we	 use	 the	 read.csv	 function	 to	 read	 the	 NFL	 csv,	 comma-
separated	 value,	 files	 into	 a	 data	 frame.	 A	 data	 frame	 is	 a	 two-dimensional
tabular	data	structure	with	labeled	axes,	in	which	arithmetic	operations	align	on
both	row	and	column	labels.	We	use	this	data	frame	to	isolate	only	our	numeric
features	within	the	dataset,	allowing	us	to	quickly	use	only	the	features	from	the
NFL	combine	that	are	measurables.	As	discussed	earlier,	in	order	for	our	output
to	be	 accurate	 the	numeric	 features	within	 each	dataset	must	be	normalized	 to
create	an	equal	weight	for	each	combine	measurement.	Using	the	PANDAS	data
frame	we	achieved	this	by	taking	the	numeric	features	and	subtracting	them	from
their	mean.	Once	this	was	done	we	divide	them	by	the	standard	deviation	of	the
dataset,	resulting	in	a	very	neat	and	evenly	weighted	data	frame	to	pass	into	the
KNN	module.

5.3.5	IMPLEMENTATION

The	 core	 of	 this	 project	 is	 written	 in	 Python,	 which	 allows	 us	 to	 package	 all
components	needed	 to	 run	our	service	easily.	The	use	of	“in_it”	 files	creates	a
sensible	 directory	 structure	 that	 ensures	 a	 user	 can	 import	 both	 functions	 and
data	if	they	see	them	useful	for	personal	applications.	The	versatility	of	python
enabled	 us	 to	 create	 functions	 that	 execute	 the	machine	 learning	 on	 our	 NFL
datasets,	 along	with	 a	 server	 that	 hosts	 these	 functions	 tied	 together	 through	 a

REST	service.

REST,	or	Representational	State	Transfer,	 is	 a	 style	of	 architecture	used	when
creating	web	services.	From	the	textbook,	REST	is	described	as	being	“based	on
stateless,	client-server,	cacheable	communications	protocol.”	Applications	using
this	 architecture	 typically	 use	 HTTP	 protocol	 with	 basic	 methods	 like	 GET,
PUT,	and	POST.	These	methods	allow	applications	using	the	REST	architecture
to	 perform	 the	 four	 CRUD	 operations,	 which	 are	 to	 create,	 read,	 update,	 and
delete	resources.	User	created	functions	can	be	combined	with	these	operations
to	create	a	cloud	service	that	completes	predefined	tasks	between	a	server	and	a
client.	 However,	 to	 establish	 this	 direct	 link	 between	 a	 server	 and	 a	 client	 a
YAML	file	is	required	[14].

A	YAML	file	is	written	in	a	readable	data	serialization	language	that	can	be	used
to	 configure	 endpoints	 for	 a	 server.	 These	 endpoints	 are	 used	 to	 dictate	 what
URLs	are	valid	within	the	server,	and	what	data,	or	data	types,	will	be	displayed
for	a	particular	path.	YAML	also	allows	specifications	to	be	added	to	endpoints
such	 as	 operations,	HTML	 responses,	 and	HTTP	methods.	 Future	 additions	 to
endpoints	 are	 simple	 to	 add	without	 affecting	 current	 endpoints,	which	makes
future	updates	 straight	 forward	with	 few	worries	 about	breaking	past	 versions.
This	provides	flexibility	that	is	complemented	by	an	easy	to	read	syntax.

Our	 project	 uses	 REST	 architecture,	 in	 conjunction	 with	 a	 YAML	 file,	 to
package	 our	 python	modules	 so	 that	 they	 are	 able	 to	 run	 on	 a	 local	machine.
Within	the	YAML	file,	there	are	predefined	paths	a	user	can	enter	for	different
purposes.	For	our	project,	the	path	can	be	altered	by	changing	‘/results/’	to	view
fantasy	football	point	predictions	based	on	a	given	position.

Figure	5:	REST	Service

Visualized	in	Figure	5,	when	an	offensive	position	is	entered,	the	HTTP	request
is	then	sent	to	the	REST	server.	From	here,	our	service	calls	the	python	function
ff_prediction(position)	within	the	nfl-analysis.py	file.	First	datasets	are	retrieved
from	a	Google	drive.	Next,	the	machine	learning	is	executed	and	the	players	are
ranked	 through	 our	 comparative	 analysis	 and	 exported	 to	 a	 csv	 file.	We	 then
convert	the	final	csv	file	to	a	html	table,	where	it	is	printed	to	the	users	screen	at
the	endpoint	defined	in	the	yaml	file.	While	this	is	functional,	we	aren’t	able	to
ensure	 consistency	 across	 multiple	 development	 and	 release	 cycles,	 which
highlights	 the	 advantage	 of	 using	 a	 software	 like	 Docker	 to	 standardize	 the
environment	of	our	project.

Docker	is	a	 tool	 that	allows	users	to	create,	deploy	and	run	applications	within
virtual	 containers.	 This	 technology	 is	 extremely	 useful	 when	 developing
applications	because	it	allows	one	to	combine	all	of	the	needed	components	into
one	package	[15].	Docker	also	ensures	parity,	which	allows	your	images	to	run
the	same	regardless	of	the	server	or	laptop	it	is	running	on.	This	eliminates	bugs
that	will	occur	on	only	certain	computers,	creating	a	standardized	environment.
We	 utilized	Docker	within	 our	 project	 by	 implementing	 compatibility	 through
the	use	of	a	Dockerfile	and	a	Makefile	which	makes	it	easy	for	users	to	build	the

Docker	 container,	 run	 the	 server	within	 the	Docker	 container,	 and	 remove	 the
Docker	 images.	The	 inclusion	 of	 the	Makefile	 simplifies	 the	 process	 for	 users
looking	to	run	our	service	and	remove	it	once	they	are	finished	with	it,	ensuring
no	compatibility	issues.	The	user	only	needs	the	Dockerfile	and	the	Makefile	to
use	our	service	to	its	fullest	extent.

5.3.6	LIMITATIONS

As	mentioned	before,	the	NFL	combine	has	six	tests	that	measure	speed,	agility,
and	 strength.	 We	 used	 that	 data	 in	 conjunction	 with	 each	 players	 height	 and
weight	when	finding	their	“nearest	neighbors.”	However,	not	all	players,	rookies
and	current,	completed	every	drill	at	the	combine.	This	can	result	in	inaccurate
rankings,	 as	KNN	 is	only	 finding	comparisons	within	one	drill.	Unfortunately,
this	gave	players	who	skipped	drills	a	boost	 in	our	 rankings,	as	 they	 tended	 to
dominate	in	the	the	drills	they	did	choose	to	participate	in.	Another	hindrance	is
that	we	had	no	way	of	knowing	what	NFL	team	each	rookie	will	be	drafted	to,
and	whether	or	not	they	will	be	becoming	a	starter	or	second	string	player.	The
role	the	rookie	has	within	his	team	is	a	huge	factor	in	Fantasy	Football,	and	not
being	 able	 to	 take	 this	 into	 account	 creates	 a	 limitation	 on	 how	 accurate	 our
model	 can	 be.	 Going	 forward,	 one	 way	 we	 could	 attempt	 to	 increase	 the
accuracy	 of	 our	 predictions	 is	 to	 compensate	 for	 both	 of	 these	 factors,	 and	 to
utilize	rookies	college	football	statistics.	While	using	college	statistics	was	in	our
initial	 plans,	 we	 ultimately	 decided	 that	 the	 differences	 in	 conference	 and
division	 could	 provide	 skewed	 data	 resulting	 in	 inaccurate	 predictions.	 This
would	not	be	impossible	to	account	for,	but	it	was	not	realistic	to	achieve	this	in
the	timeframe	we	were	given.

5.3.7	CONCLUSION

As	the	number	of	Fantasy	Football	players	continues	 to	 increase,	we	set	out	 to
answer	 the	 age	 old	 question,	who	 should	 be	my	 top	pick	 in	 this	 years	 fantasy
football	draft?	To	help	our	fellow	fantasy	football	players	answer	this	question,
we	 provide	 users	 of	 our	 service	 with	 a	 way	 to	 make	 educated	 draft	 picks	 on
rookies	that	are	likely	to	succeed	in	the	NFL.	To	accomplish	this	goal,	we	used
nearly	 20	 years	 worth	 of	 NFL	 combine	 and	 fantasy	 football	 data	 to	 create	 a
service	 using	 REST,	 Python,	 Yaml,	 and	 Docker.	 Utilizing	 these	 technologies
along	with	 artificial	 intelligence,	we	were	 able	 to	 successfully	 rank	 rookies	by

their	 position,	 accompanied	 by	 our	 prediction	 of	 average	 fantasy	 points	 per
game.

We	hope	to	test	the	accuracy	of	our	service	throughout	the	course	of	2019	to	see
if	this	years	rookies	will	hold	up	to	our	predictions.	If	we	were	to	address	some
of	our	limitations,	adding	factors	such	as	the	role	a	rookie	will	play	on	his	team,
we	 would	 be	 able	 to	 continuously	 update	 our	 service	 and	 make	 adjustments.
Analyzing	 these	 results	 would	 help	 us	 make	 it	 more	 accurate	 for	 next	 year’s
draft,	 and	 if	 we	 find	 our	 algorithm	 to	 be	 successful	 we	 have	 an	 avenue	 for
deploying	 it	 into	 the	 real	 world.	 Providing	 users	 with	 educated	 sports	 picks
through	machine	 learning	 could	 revolutionize	 fantasy	 sports;	 and	 in	 a	 market
that	has	nearly	a	$4.5	billion	impact	across	the	sports	industry,	this	information
has	the	opportunity	to	produce	serious	revenue.	We	hope	to	continue	building	on
top	 of	 this	 foundation,	 and	 refine	 our	model	with	 hopes	 of	 eventually	 tapping
into	this	market.

5.3.8	SPECIFICATION

5.4	ANALYSIS	OF	SOCCER	DATA	WITH	KMEANS	☁�

swagger:	"2.0"

info:	

		version:	"0.0.1"

		title:	"NFL	FF	Points"

		description:	"A	service	that	provides	Fantasy	Football	point	predictions	for	upcoming	NFL	rookies"

		termsOfService:	"http://swagger.io/terms/"

		contact:	

				name:	"NFL	FF	Prediction	Service"

		license:	

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/cloudmesh/nfl-analysis/v1"

paths:	

		/results/{position}:

				get:

						tags:

								-	NFL

						parameters:

								-	name:	position

										in:	path

										description:	position

										type:	string

										required:	true

						operationId:	nfl-analysis.ff_prediction

						produces:

								-	text/html

						responses:	

								"200":

										description:	"FF	data"

										schema:

												$ref:	"#/definitions/NFL"

definitions:

		NFL:

				type:	"string"

				properties:	

						model:

								type:	"string"

https://github.com/cloudmesh-community/sp19-222-92/blob/master/project-report/report.md

Jesus	Badillo,	Xandria	McDowell,	Ben	Yeagley
jebadi@iu.edu,	xmcdowel@iu.edu,	byeagley@indiana.edu
Indiana	University	Bloomingtion,
hid:	sp19-222-92
github:	☁�
code:	☁�

5.4.1	ABSTRACT

Data	 collected	 by	 wearbale	 devices	 used	 by	 the	 Indiana	 University	Women’s
soccer	team	was	used	to	classify	the	six	unique	offesive	and	defensive	positions
excluding	 the	 goaltender.	 Successful	 classification	 of	 positions	 from	wearable
data	 using	 machine	 learning	 techinques	 could	 provide	 talent	 evaluators	 and
coaches	with	an	extra	 tool	 to	help	 increase	on	 field	productivity.	The	k-means
algorithim	was	used	in	order	to	classifiy	the	data	from	wearble	devices	into	six
unique	 positions.	 This	 is	 the	 first	 step	 towards	 creating	 a	 workflow	 for	 using
machine	learning	as	a	talent	evalution	tool	for	soccer	players.	Once	the	ability	to
successfully	classify	data	from	wearable	devices	into	unique	positions	additional
layers	 of	 complexity	 can	 be	 added,	 like	 comparing	 professional	 athletes	 or
collegiate	 athletes	 to	 prospects.	 A	 framework	 for	 the	 implemtnation	 of
classfiying	 soccer	postions	has	been	 implemented	with	Scikit-learn	 libraries	 in
python3.	 OpenAPI	 Specification	 was	 used	 in	 order	 to	 create	 a	 service	 that
exploits	the	Scikit-learn	libraries	through	an	easy	user	interface.

5.4.2	INTRODUCTION

Can	 data	 gathered	 from	 athletic	 practices	 and	 games	 be	 used	 to	 create
benchmarks	 for	 how	 an	 athlete	 playing	 a	 specific	 position	 should	 perform?
Recent	advancements	in	wearable	technologies	has	allowed	data	from	sensors	to
instantly	 improve	how	machines	 and	people	perform.	These	 advancements	 are
now	 being	 used	 in	 sports	 to	 make	 computations	 to	 player	 data	 to	 get	 future
insight	 on	 how	 to	 improve	 the	 overall	 team.	 For	 example,	 the	 popular	movie
Money	 Ball	 focused	 on	 how	 analytics	 can	 be	 used	 to	 assemble	 a	 competitve
professional	baseball	team.	This	type	of	analysis	can	show	users	what	datapoints
are	 shared	 by	 top	 players	 allowing	 coaches	 to	 pick	 their	 players	 accordingly.
Soccer	uses	sports	data	 to	 improve	 the	physical	attributes,	such	as	stamina	and
pace,	of	each	individual	player	since	it	is	a	more	technical	sport	that	cannot	just

https://github.com/cloudmesh-community/sp19-222-92/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-92/tree/master/project-code

use	quantitative	data	 to	make	decisions.	The	 field	of	 sports	 analytics	has	been
changed	by	machine	learning	techniques	that	have	been	adapted	to	use	the	hard
numerical	data	received	from	edge-computing	devices	to	improve	teams.

5.4.2.1	Sport	Analytics

The	rapid	 innovation	of	 technology	has	 infiltrated	many	fields	 including	sports
analytics	because	it	has	created	more	data	 that	can	show	coaches	what	athletes
need	 to	 improve	 on.	 Edge	 computing	 is	 the	 technology	 that	 has	 led	 to	 the
massive	 increase	 in	more	refined	sports	data	because	of	 its	ability	 to	provide	a
real-time	 numerical	 representation	 of	 what	 happened	 on	 the	 field.	 With	 this
numerical	data,	actions	can	be	taken	to	rapidly	improve	each	player	specifically
on	the	areas	where	they	need	immediate	attention.	Edge	computing	is	computing
that	is	done	near	the	source	of	the	data,	and	it	uses	the	cloud’s	ability	to	compute
from	 a	 remote	 source	 to	 get	 instant	 data	 from	 a	 device.	 Edge-computing	 has
allowed	sensors	to	get	more	accurate	data	without	disturbing	the	players	which
has	given	many	sports	a	new	way	to	get	an	advantage	over	their	competitors.

5.4.2.2	Sensors	in	Sports

Sensors	have	become	more	prominent	 in	 sports	due	 to	 recent	advancements	 in
biomedical	 engineering	 which	 have	 made	 sensory	 technology	 better	 to	 create
more	 informative	data.	These	new	 innovations	 in	 sensory	 technology	 can	now
measure	 data	 points	 such	 as	 “temperature,	 oxygen	 saturation	 levels,	 and	 heart
rate	 (SpO2)	 through	 photo	 optic	 sensors	 in	 wearable	 rings	 and	 wrist
devices”[16].	These	 new	advancements	 are	 necessary	 because	 now,	more	 than
ever,	“the	differences	between	athletes	are	becoming	more	and	more	slight”[16]
which	has	led	coaches	and	trainers	to	look	to	data	analytics	to	get	an	advantage.
By	 putting	 small	 sensors	 into	 players’	 training	 equipment,	 we	 can	 detect
important	 aspects	 of	 playing	 a	 sport	 such	 as	 muscle	 exertion,	 heart	 rate,	 and
respiration.	 Sensors	 can	 provide	 immediate	 feedback	 to	 the	 athletes.	 For
example,	 when	 attached	 to	 player	 attire,	 “accelerometers	 and	 conductive
materials	can	measure	posture	and	provide	real-time	feedback	to	athletes	so	they
can	perfect	their	form”[16].

Soccer	has	recently	began	to	adopt	the	use	of	technology	in	many	different	ways
such	as	the	Adidas	MiCoach	ball,	which	is	a	regular	sized	soccer	ball	with	a	built

in	 sensor	 that	 can	detect	 the	power,	 spin,	 and	accuracy	of	 a	players	kick.	This
ball	allows	players	and	coaches	the	to	see	how	the	athlete	shoots	the	ball	through
an	 iOS	 or	Android	 device	 to	 improve	 the	 players	 shooting	 form.	This	 type	 of
sensor	 is	 mainly	 used	 for	 beginners,	 professionals	 tend	 to	 focus	 on	 the	 more
physical	side	of	data	collection	such	as	wearable	sensors	that	track	physical	stats.
The	Catapult	Sports	Playertek	 is	a	compression	vest	with	a	built-in	sensor	 that
has	 an	 accelerometer,	 magnometer,	 and	 a	 GPS	 that	 can	 track	 athletes’
performance	 during	 practices.	 The	 IU	Women’s	 soccer	 team	uses	 sensors	 like
the	 Playertek	 to	 get	 athlete	 data	 because	 it	 allows	 the	 coaches	 to	 know	 what
physical	attributes	to	track	for	each	player	when	they	are	training	or	playing.

5.4.3	SOCCER	DATASET

Practice	 and	 game	 data	 from	 the	 IU	Women’s	 Soccer	 team	 was	 used	 in	 this
analysis.	 The	 results	 of	 this	 analysis	 aims	 to	 leverage	 ‘sensed’	 athlete	 data	 to
show	 coaches	 and	 players	 if	 players	 are	 performing	 optimally.	 The	Women’s
team	 data	 has	 34	 individual	 columns	 such	 as	 sprints,	 accelerations	 in	 varying
ranges,	and	heartrate	that	are	weighted	based	on	how	much	time	the	individual
played.	Some	data	points,	such	as	sprints,	can	be	used	to	improve	the	athlete	in	a
certain	aspect	of	their	sport,	in	this	case	by	increasing	the	number	of	sprints	they
have	during	 a	game.	Using	data	 in	 this	way	can	help	 the	player	 improve	 their
speed,	 but	 it	 will	 do	 very	 little	 to	 improve	 their	 overall	 ability.	 Instead	 the
Kmeans	Clustering	method	will	show	the	entire	team	how	they	compare	to	each
other	and	the	ideal	player	of	their	respected	position,	so	that	the	entire	team	can
improve.	By	using	Kmeans	on	the	data	each	player	can	improve	how	they	play,
not	just	how	fast	they	can	run.	The	Kmeans	algorithm	is	optimal	for	this	dataset
because	 it	uses	eight	different	datapoints	 to	determine	how	well	each	player	 is
playing	their	position	compared	to	how	they	should	be.	This	method	provides	a
literal	 target	 from	 which	 players	 can	 see	 which	 areas	 they	 specifically	 need
improvement	on	to	reach	the	centroid,	or	the	ideal	player	for	that	position.

Clustered	 data	 can	 be	 used	 to	 compare	 players	 to	 other	 players	 who	 play	 the
same	position	in	different	divisions,	 levels,	etc.	This	method	can	sometimes	be
inefficient	because	what	is	good	can	vary	a	lot	in	soccer,	due	to	it	being	based	on
skill	rather	than	physical	attributes.	For	example,	some	defenders	do	not	run	very
much	at	all,	but	 instead	rely	on	their	ability	 to	read	players	movements	 to	stop
the	opposing	players	 from	getting	past	 them.	This	would	be	a	great	data	point

that	could	likely	be	used	to	create	more	accurate	models	that	can	help	the	players
distinguish	themselves	from	the	other	positions	in	terms	of	how	they	should	be
performing.	The	 problem	 is	 that	 sensors	 are	 limited	 to	 numerical	 data,	 so	 this
type	 of	 ability	 cannot	 be	 measured.	 To	 avoid	 any	 of	 these	 limitations,	 the
Women’s	 Soccer	 team	 data	 has	 many	 of	 the	 same	 data	 points	 measured	 in
different	 ranges.	For	example,	 the	Number	of	Accelerations	 category	has	 eight
different	ranges	which	are	either	a	deceleration	or	an	acceleration.	This	way	of
splitting	data	could	transcend	the	inability	to	measure	the	intangibles	because	it
measures	 the	 same	 data	 points	 at	 different	 instances	 which	 tend	 to	 vary	 by
position.

The	Women’s	 team	data	was	obtained	 from	the	2018	season	where	 they	 faced
off	 with	 many	 other	 Big	 10	 schools.	 There	 were	 eleven	 datasets	 which	 each
contained	a	row	for	each	of	the	players	where	you	could	see	their	names	and	all
of	their	data	points	for	that	particular	game.	Since	each	dataset	had	only	23	data
points	 we	 decided	 to	 join	 all	 of	 the	 datasets	 into	 one	 big	 dataset	 where	 the
players’	names	were	removed	and	replaced	by	the	player’s	positon	into	a	column
called	Class.	 The	 original	 datasets	 that	 were	 given	 to	 us	 did	 not	 contain	 how
many	minutes	each	player	played,	which	could	alter	how	the	kmeans	algorithm
clusters	 the	 players.	The	 algorithm	would	 likely	 cluster	 the	 players	wrongly	 if
the	Minutes	Played	column	was	not	added	because	it	would	give	the	players	who
are	substitutes	higher	values	without	taking	into	accountthe	amount	of	time	that
they	played	during	a	game.	In	soccer,	the	amount	of	time	you	play	can	especially
effect	many	of	your	stats	because	the	sport	is	largely	based	on	endurance	with	a
few	 short	 bursts	 of	 sprints.	 The	 substite	 players	 who	 had	 no	 game	 time	were
removed	from	the	dataset	because	they	could	alter	how	the	algorithm	clusters	a
good	 stat	 vs.	 a	 bad	 stat.	 Once	 the	 extraneous	 data	 points	were	 removed	 there
were	only	170	rows	left	which	all	had	a	label	of	either	Mid-fielder,	Forward,	or
Defender.	 The	 label	 was	 used	 as	 the	 prediction	 variable	 to	 give	 insight	 as	 to
where	the	kmeans-computed	clusters	should	be	centered.	The	Kmeans	algorithm
uses	the	labels	to	predict	the	outcome	of	each	of	the	170	rows’	stats	against	the
kmeans-computed	stats.

5.4.4	ALGORITHM	DISCUSSION

5.4.4.1	K-means

K-Means	is	an	unsupervised	machine	learning	algorithm	that	takes	an	unlabeled
dataset	and	finds	groups	within	data	without	defined	categories.	Unsupervised	is
learning	from	data	that	are	unlabeled	meaning	you	don’t	know	what	the	values
of	 the	output	data	might	be.	The	 idea	 is	 to	 look	at	 the	average	or	mean	values
that	 can	 be	 clustered	 and	 how	 they	 can	 be	 related	 to	 the	 k	 groups.	 K	 is	 also
known	 as	 centroids	 which	 is	 a	 data	 point	 at	 the	 center	 of	 each	 cluster.	 Each
cluster	 is	 placed	 in	 a	 certain	 position	 because	 depending	 on	 how	 close	 the
clusters	are	to	each	other	will	change	the	results.	Which	is	why	the	placement	of
the	 cluster	 are	 important	 because	 the	 layout	 of	 centroids	 will	 determine	 the
results.	 In	K-Means	 the	 centroids	 are	 randomly	 selected	 and	 then	 used	 as	 the
cluster	of	each	point.	After	the	centroid	is	placed	then	all	the	data	point	is	split
up	into	the	correct	centroids	based	on	the	data	point	that	they	are.	Now	that	the
data	 points	 have	 a	 home	 the	 next	 step	 is	 re-calculation	 of	 k	 to	 optimize	 the
position	of	the	centroid.	This	process	of	optimization	continues	to	happen	until
centroids	have	stabilized	or	a	certain	number	of	iterations	have	occurred.	When
using	 this	 algorithm,	 the	 hope	 is	 that	 the	 results	 can	 explain	 why	 common
parameter	values	are	 in	 the	same	group.	This	algorithm	takes	numerical	values
or	data	points	that	describe	a	coordinated	value	within	a	data	set	and	cluster	them
according	 to	 the	given	k.	For	 example,	K-	Means	 is	 beneficial	 for	 this	 project
because	it’s	able	to	focus	on	a	particular	data	set	for	the	women’s	soccer	team	at
Indiana	University	 (IU)	 and	 compare	 that	 to	 users	 data.	 K-Means	 coordinates
can	represent	and	describe	many	different	things	such	as	elections,	medical	test,
sports	 teams,	 or	 wine	 data.	 Typical	 you	 use	 K-means	 on	 a	 dataset	 to	 get	 the
model	of	the	data,	this	is	used	to	see	the	behaviors	and	analyze	the	patterns	the
data	 set.	When	 using	 clustering	methods	 variance	 becomes	 an	 important	 topic
trying	to	understand	the	math	behind	this	algorithm.	Variance	is	a	measurement
of	how	far	data	values	are	 from	the	mean.	By	 look	at	 the	variance	equation,	 it
shows	that	it	 is	a	measure	of	the	square	difference	between	the	data	points	and
the	mean	value	and	then	the	average.	When	using	the	K-means	algorithm	one	of
the	key	points	 is	 to	measure	 the	closeness	of	 the	data	 to	 its	average	which	 led
into	cluster	variance	which	divides	the	data	into	clusters,	each	will	have	its	own
average.	While	 there	are	many	different	machine	 learning	algorithms	K-Means
worked	best	because	it	takes	a	unsupervised	data	set	which	was	need	in	this	case.
While	K-Means	gives	an	optimal	cluster	model,	spectral	cluster	is	better.	The	K-
means	objective	function	is	given	in	Equation	2.

k

∑
j=1

n

∑
i=1

∥x (j)
i − cj∥

2
(2)

5.4.4.2	Spectral	Clustering

Before	 landing	 on	 K-means	 to	 be	 the	 machine	 learning	 algorithm,	 spectral
clustering	 was	 the	 set	 machine	 learning	 algorithm	 for	 finding	 out	 how	 close
people	 were	 playing	 against	 Indiana	 University	 womens	 soccer	 team.	 A
commonly	 used	 algorithm	 for	 classification	 that	 has	 become	 popular	 in	 recent
years	 is	 spectral	 clustering	 [17].	 This	 algorithm	 can	 be	 effectively	 solved	 by
using	 standard	 linear	 algebra	 methods	 and,	 software.	 For	 the	 most	 part,	 it	 is
known	 to	 outperform	 K-means	 which	 is	 what	 was	 seen	 with	 this	 data	 set.
Spectral	 clustering	 uses	 the	 data	 points	 as	 nodes	 of	 a	 graph,	 which	 are	 then
treated	as	partitioning	points	and	mapped	to	a	low-dimensional	space	making	it
easier	 to	 form	 clusters.	 Spectral	 clustering	 follows	 an	 approach	 where	 if	 the
points	are	extremely	close	to	each	other	they	are	put	into	the	same	cluster,	even
if	 the	 distance	 between	 them	 is	 within	 a	 two	 point	 range	 if	 they	 are	 not
connected	they	are	not	clustered.	While	k-means	points	can	be	within	the	same
range	and	still	fall	within	the	same	group	because	it	is	measured	by	the	distance
between	 the	 data.	 This	 data	 set	 has	 many	 points	 where	 they	 are	 considered
within	range	of	each	other	which	is	why	spectral	clustering	gave	better	results.	In
spectral	clustering	the	data	is	connected	within	a	way	that	leds	to	the	data	points
falling	 within	 the	 same	 cluster.	 The	 problem	 arises	 when	 using	 spectral
clustering	because	the	project	aims	to	show	people	how	they	played	compared	to
Indiana	 University	 soccer	 players	 but	 when	 trying	 to	 show	 their	 data	 and	 the
soccer	players	data	on	the	same	plot	issues	arise.	This	happens	because	you	can
not	get	the	labels	using	spectral	clusters	so	the	use	would	not	know	where	they
where.	spectral	equation	below.

()∑n
i,j=1wij(fi − fj)2

5.4.4.3	Dimensional	Reduction

Dimensional	reduction	was	something	that	was	needed	for	this	data	set	because
there	were	many	points	within	one	players	statistics.	Having	multiple	points,	was
too	much	for	K-means	to	give	explainable	results.	Dimension	reduction	allowed

1
2

the	data	set	to	be	reduced	to	a	certain	number	of	random	variables	by	obtaining	a
set	of	key	variables.	Looking	at	dimension	reduction	from	the	math	perspective
there	are	the	non-linear	and	linear	methods.	Typically,	the	Linear	method	is	used
because	it	is	easier	to	implement.	In	the	linear	calculation	results	in	each	variable
being	apart	of	a	 linear	combination	of	 the	 initial	variables	 such	 that	k ≥ p	 see
Equation	3.

Si = wixi +…wipxpforI = 1,…,k (3)

where

S = Wx

Wx	represents	the	weighted	matrix	in	linear	conversion.	Ap * k	 is	 the	same	as	
x = As	 which	 are	 new	 variables	 or	 s	 identified	 as	 hidden	 or	 latent	 variables
according	 to	 [18].	 When	 using	 the	 matrix	X	 in	 terms	 of	 nxp	 Equation	 4	 is
applied.

Sij = w1jW1j +…w1pXpJforI = 1…, kandj = 1…,n (4)

According	to	18	this	is	the	easiest	linear	technique	to	use.

5.4.5	RESULTS

Normally	a	clustering	model	cannot	be	scored	for	its	accuracy;	there	are	no	true
labels	in	unsupervised	learning	to	compare	with	the	clustering	models	predicted
labels	[19].	However,	 in	our	case	each	of	the	fitness	data	points	had	the	player
name	associated	with	it,	so	we	were	able	to	replace	each	name	in	the	dataset	with
their	 position	 on	 the	 field	 (the	 predicted	 value).	 Converting	 these	 positions	 to
numeric	representations	gave	us	a	list	of	true	labels	to	use	for	scoring.	We	found
each	players	position	by	 taking	 the	position	 listed	on	 the	 team	 roster	page.	Of
course,	 some	players	may	play	 in	different	positions	 throughout	 the	 season,	 so
some	of	the	labels	may	be	incorrect.	Our	labelling	process	was	the	best	we	could
do	 with	 the	 information	 available.	 We	 focused	 on	 three	 evaluations	 for	 our
model:	completeness,	homogeneity,	and	v-measure.	Completeness	is	a	measure
of	 how	well	 each	 class	was	 clustered	 together	 [20],	while	 homogeneity	 scores
the	clusters	based	on	what	degree	in	contains	only	one	class	[21].	The	harmonic
mean	 of	 the	 completeness	 and	 homogeneity	 scores	 gives	 the	 v-measure	 score

[22]	[23].	Each	is	considered	perfect	if	their	score	is	1.0.	Conversely,	0.0	is	the
worst	possible	score.	The	results	of	our	clustering	model	can	be	seen	in	Table	1.
had	a	completeness	score	of	 .260,	homogeneity	score	of	 .227,	and	a	v-measure
score	of	.242.	This	means	our	model	was	more	effective	at	clustering	the	classes
together	 than	having	 each	 cluster	 contain	 purely	 one	 class.	Overall,	 the	model
scored	poorly.	Its	scatter	plot	[24]:

Figure	6:	Scatter	plot	of	clustered	results

Looking	at	 the	scatter	plot	showing	the	clusters	and	the	data	points	true	labels,
we	can	see	that	the	poor	score	can	be	mainly	attributed	to	the	general	failure	to
classify	forwards	(x’s)	correctly.	The	defenders	(dots)	and	midfielders	(triangles)
have	fairly	defined	clusters	themselves,	and	viewing	the	scatter	plot	without	the
any	forward	data	points	makes	it	even	more	apparent.

Figure	7:	Scatter	plot	clustered	results	without	forwards

The	 black	 cluster	 was	 split	 almost	 50/50	 between	 forwards	 and	 midfielders
despite	 them	 being	 decently	 separated	 groups,	 mainly	 because	 the	 model
identified	 the	 outliers	 of	 the	 dataset	 as	 the	 red	 cluster.	 It’s	 possible	 that	 if	 the
dataset	 was	 cleaned	 up	 by	 removing	 the	 outliers	 before	 clustering,	 the	 model
would’ve	separated	the	classes	much	more	accurately.	Outliers	as	defined	by	our
boxplot	are	shown	here	[25]	[26]:

A	Boxplot	of	the	data	after	normlization	is	given	in	Figure	8.

Figure	8:	Boxplot	after	normalization

Our	method	for	removing	the	outliers	could	have	involved	calculating	a	Z-Score
for	 each	 data	 point,	 which	 gives	 the	 amount	 of	 standard	 deviations	 a	 point	 is
from	the	mean	of	the	dataset,	and	then	getting	rid	of	points	with	a	Z-Score	above
a	 certain	 amount	 of	 standard	 deviations	 [27].	 However,	 it’s	 important	 to
determine	 if	 the	 points	 in	 that	 top-right	 cluster	 would	 even	 qualify	 as	 true
outliers	or	 if	 they	are	 just	points	 the	clustering	model	 is	unable	 to	predict.	We
might	need	to	investigate	those	points	in	the	original	dataset	to	see	if	there	is	a
discernable	 pattern	 to	 them	 because	 theoretically,	 the	 data	 shouldn’t	 have	 any
anomalies	 unless	 the	 measuring	 device	 malfunctioned.	 It	 could	 even	 be	 a
specific	game	that	led	to	those	points	being	separated;	the	game	could	have	been
much	more	intense	than	normal,	leading	to	higher	numbers	for	each	player	that
participated.	Disregarding	them	just	to	improve	the	models	accuracy	may	not	be
the	right	choice.

Table	1:	Results	of	our	k-means	analysis
completeness homogenitiy v-score

0.260 0.227 0.242

5.4.6	ANALYSIS

A	necessary	question	to	ask	is:	is	the	low	v-measure	score	of	the	model	due	to
possible	errors	 in	 the	dataset	 like	 those	discussed	above,	an	incorrect	choice	of
machine	learning	method,	a	general	unpredictability	of	player	position	with	the
type	 of	 data	 given,	 or	 some	 other	 reason?	 To	 examine	 the	 second	 possibility
(wrong	 method),	 we	 split	 up	 the	 data	 into	 training	 and	 testing	 using
train_test_split	from	sklearn,	and	then	we	added	a	variety	of	other	classification
techniques	to	the	project	code	[28].	The	first	technique	was	Multinomial	Logistic
Regression,	a	method	that	uses	a	linear	combination	of	the	predictor	variables	to
model	the	dependent	variable	(position)	[29].	The	model	had	an	accuracy	score
of	 .63	 for	 our	 training	 data	 and	 .60	 for	 our	 test	 data.	 The	 next	 technique	 we
employed	was	a	Decision	Tree	Classifier,	which	handles	multi-class	predictions
naturally.	 Decision	 trees	 use	 the	 observed	 variables	 from	 the	 dataset	 to	 make
choices	(branches	of	the	tree),	leading	to	a	conclusion	about	the	predicted	value
(leaves	of	the	tree)	[30].	We	gave	our	decision	tree	a	max	depth	of	eight	as	its
only	parameter.	It	had	an	accuracy	score	of	.80	for	the	training	data	and	.65	for
the	 test	data.	Next,	our	K-Nearest	Neighbors	Classification	model	functions	by
taking	 a	 vote	 of	 the	 points	 around	 the	 point	 to	 be	 classified	 and	 assigning	 the
point	whichever	 class	 that	 had	 the	most	 votes	 [31].	 The	 number	 of	 neighbors
used	can	be	specified	in	the	function	call,	and	we	found	eight	neighbors	worked
best.	Our	k-NN	model	had	an	accuracy	score	of	.76	for	the	training	data	and	.74
for	the	test	data.	We	have	a	Linear	Discriminant	Analysis	classifier	as	well,	with
the	number	of	components	set	at	two	[32]	[33].	Its	accuracy	score	was	.69	for	the
training	 data	 and	 .60	 for	 the	 test	 data.	We	 also	 had	 a	 Gaussian	 Naïve	 Bayes
classifier	 despite	 the	 fact	 that	 our	 data	 doesn’t	 have	 features	 that	 can	 be
considered	 independent,	 but	 it	 still	 serves	 the	 purpose	 of	 comparison	 to	 the
clustering	model	[34]	[35]	[36].	Its	accuracy	score	was	.73	for	the	training	data
and	.63	for	the	test	data.	Finally,	we	had	an	SVM	classifier	added	to	our	project
code,	 another	method	 better	 suited	 for	 just	 two	 classes	 but	 used	 anyway	 [37]
[38].	Our	SVM	model	had	an	accuracy	score	of	.58	for	the	training	data	and	.63
for	 the	 test	 data.	 Overall,	 the	 highest	 scoring	 model	 for	 the	 test	 data	 was	 K-
Nearest	Neighbors,	yet	its	.74	score	for	the	test	data	still	was	not	very	high.	It	is
difficult	to	make	a	direct	comparison	between	the	k-NN	model	and	our	original
clustering	 model	 for	 multiple	 reasons.	 Their	 scores	 don’t	 really	 represent	 the

same	idea,	as	accuracy	isn’t	well	defined	when	it	comes	to	clustering.	Clustering
is	more	 generic	 than	 k-NN	 classification	 too,	 because	 its	 goal	 isn’t	 to	 predict
classes	for	each	individual	data	point.	Instead,	the	goal	of	clustering	is	to	group
the	 data	 into	 distinct	 sets	 and	 see	 how	 these	 sets	 align	 with	 real-world
observation	 and	 truth.	Failed	 clustering	 (or	 poor	 clustering	 in	 our	 case)	means
our	dataset	couldn’t	fully	differentiate	positions	with	the	variables	measured.	An
aspect	sorely	needed	 to	 further	separate	 the	classes	would	be	GPS	data	 to	 find
the	 average	 location	 on	 the	 field	 for	 each	 player,	 or	 a	 heat	 map	 of	 their
movement	throughout	the	game.

Table	2:	Machine	Learning	Table	of	Reults
Machine	Learning	Method Accuracy	(training) Accuracy	(testing)
Logistic	Regression .63 .60
Decision	Tree .80 .65
K-Nearest	Neighbors .76 .74
Linear	Discriminant	Analysis .69 .60
Gaussian	Naive	Bayes .73 .63
SVM .58 .63

5.4.7	SPECIFICATION
swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"Clustering	Athlete	Data"

		description:	"A	simple	service	that	gets	game	data	from	a	cloud	storage	service	to	show	athletic	performance"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	with	AI"

		license:

				name:	"Xandria	McDowell,	Ben	Yeagley,	and	Jesus	Badillo"

host:	"localhost:8080"

basePath:	"/project19"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		

		/data/output/<output>:

				get:

						tags:

								-	DATA

						operationId:	functions.download

						description:	"Downloads	the	dataset	from	the	URL"

						produces:

								-	"application/json"

						responses:

								"200":

5.5	TETRIS	SCORE	ANALYSIS	SERVER	☁�
Zach	Levy
zwlevy@iu.edu
Indiana	University
hid:	sp19-222-97
github:☁�
code:☁�

Keywords:	 Tetris,	 linear	 regression,	 decision	 tree,	 gini	 coefficient,	 correlation
coefficient,	determination	coefficient,	Python

5.5.1	ABSTRACT

Tetris	is	a	popular	video	game	played	by	many	professional	and	casual	players

										description:	"Data	info"

										schema:	{}

		

		/data/kmeans/<datafile>:

				get:

						tags:

								-	KMEANS_PLOT

						operationId:	functions.kmeans_plot

						description:	"Filter	the	dataset,	normalize,	and	perform	Kmeans"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Data	info"

										schema:	{}

		/data/user/<datafile>:

				get:

						tags:

								-	USER_DATA

						operationId:	functions.user_plot

						description:	"user	data"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Data	info"

										schema:	{}

		/data/boxplot/<filename>:

				get:

						tags:

								-	USER_DATA

						operationId:	functions.boxplot

						description:	"user	data"

						produces:

								-	"application/png"

						responses:

								"200":

										description:	"fig	info"

										schema:	{}

https://github.com/cloudmesh-community/sp19-222-97/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-97/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-97/tree/master/project-code

worldwide.	 Using	 data	 recorded	 from	 players	 in	 from	 the	 Tetris	 World
Championship	 and	 analyzing	 the	 qualities	 between	 various	 factors	 such	 as
playtime,	 score,	 level,	 and	 more,	 the	 aim	 is	 to	 possibly	 extract	 meaningful
relationships	and	evaluate	them	using	standard	regression	models.	The	usage	of
a	 linear	 regression	 model	 and	 decision	 trees	 are	 used	 to	 explain	 if	 any
relationships	between	these	exist,	and	whether	said	relationships	are	meaningful.
From	the	extrapolated	data,	the	aim	is	to	use	statistical	coefficients,	such	as	the
correlation	coefficent	and	Gini	coefficient	from	the	models	to	do	this.

5.5.2	INTRODUCTION

Released	originally	on	 the	Electronika	60	 in	 the	USSR	on	June	6,	1984,	Tetris
has	came	from	a	small	programming	project	from	Soviet	game	designer	Alexey
Pajitnov	 to	 one	 of	 the	 most	 world-renowned	 puzzle	 video	 games	 of	 all	 time.
Although	deviations	 have	 spawned	 from	 the	 game,	 the	 primary	 rules	 of	Tetris
are	 rather	 simple.	 Blocks,	 arranged	 into	 sequences	 of	 four	 called	 tetrominoes,
move	vertically	 from	top	 to	bottom.	The	player	can	reposition	and	reorient	 the
blocks,	and	the	goal	 is	 to	get	a	set	of	blocks	all	on	a	bottom	line,	 in	which	the
blocks	will	disappear	and	add	to	the	score.	After	many	of	these	occur,	the	game
will	 speed	 up,	making	 it	 harder	 to	 arrange	 blocks	 correctly.	The	 game	 is	 over
when	the	blocks	reach	to	top	of	the	screen.	Ported	to	a	wide	variety	of	platforms,
Tetris	has	become	a	part	of	popular	video	game	culture	and	has	sold	millions	of
copies.	Psychological	studies	done	on	people	who	play	the	game	have	lead	to	the
discovery	 that	 people	 who	 play	 for	 prolonged	 periods	 of	 time	 may	 see	 mild
remote	memories	 of	 the	 images	 of	 the	 tetrominoes	moving	 [39].	Additionally,
some	 studies	 suggest	 that	 Tetris	 may	 help	 reduce	 mental	 stress	 and	 help
individuals	cope	with	post-traumatic	stress	disorder	[40].

5.5.3	DESIGN

The	primary	design	for	this	project	comes	in	two	stages:

1.	 The	creation	of	a	regression	model	that	most	suitable	fits	the	dataset.	This
should	most	likely	be	a	linear	regression	model	or	a	data	tree.

2.	 The	 creation	 of	 a	 RESTful	 server	 that	 could	 retrieve	 the	 raw	 data	 sets,
perform	analysis,	and	return	the	data	to	a	requested	user.

The	 first	 part	 of	 the	 project	 required	 me	 to	 program	 a	 way	 to	 retrieve	 the
transcribed	 data.	 Due	 to	 the	 data	 on	 the	 website	 being	 only	 images	 of
spreadsheets	 rather	 then	 the	spreadsheets	 themselves,	 this	was	neccessary	[41].
By	importing	the	Python	libraries	csv	and	requests,	the	program	can	retrieve	this
data	from	a	Google	Drive	downloadable	link	as	TETRIS_DOWNLOAD.csv.

By	using	a	decision	tree	and	a	linear	regression	model,	we	can	better	understand
which	 relationships	 between	 variables	 are	meaningful	 and	which	 are	 not.	 The
analysis	of	 the	data	was	first	done	with	the	usage	of	a	 linear	regression	model.
For	 this,	 I	 took	 the	 features	 to	be	year,	 rounds	won,	and	composite	 score.	The
label	 in	question	was	 the	 resulting	 ranking	of	players.	The	 second	model	used
was	 a	 data	 tree	 classifier.	 This	would	 help	with	 the	 previous	 linear	 regression
model,	since	we	can	observe	how	the	Gini	coefficients	-	numbers	that	represent
the	 inequality	 distribution	of	 data	 tree	 nodes	 that	 help	 color	 the	 importance	of
certain	 variables	 -	 are	 resulted	 from	 the	 usage	 of	 a	 decision	 tree.	 Gini
coefficients	are	assigned	to	each	branch	and	leaf	of	a	decision	tree	and	evaluate
the	decision	inequality	when	evaluating	whether	an	entry	is	one	or	another.	If	the
nodes	expectedly	go	to	zero,	it	is	a	positve	indicator	that	the	model	fits	well.

5.5.4	ARCHITECTURE

There	are	 two	primary	structures	within	 this	experiment.	The	 first	 is	 the	 linear
regression	model	module.	This	module	 can	 retrieve	 data	 from	a	Google	Drive
link	 and	 downloads	 it	 locally.	 Using	 a	 Representational	 state	 transfer	 (REST)
service,	 it	 can	 send	 over	 results	 of	 analysis	 on	 the	 data	 set.	 It	 does	 this	 by
running	 HTTP	 requests	 to	 the	 server	 that	 contains	 an	 API	 to	 manage	 the
endpoints	 of	 communication	 and	 send	 HTTP	 responses	 back	 to	 a	 client.	 The
scipy	 library	makes	 it	 very	 simple	 to	 perform	 linear	 regression.	 It	 gives	 three
distinct	graphs	-	divided	into	subplots	on	a	single	image	-	and	uses	matplotlib	to
make	graphs	that	are	easily	human-readable.

1.	 Rank	vs.	Year
2.	 Rank	vs.	Score
3.	 Rank	vs.	Rounds	Won

As	 for	 the	 data	 tree	module	 it	 will	 simply	 read	 the	 data	 the	 same	way	 as	 the
linear	regression	module	and	create	a	 .dot	chart	 from	the	results,	which	can	be

saved	 remotely	 just	 like	 the	 graphs	 within	 the	 linear	 regression	 module.	 The
Python	 library	 graphviz	 makes	 for	 easy	 use	 of	 creating	 the	 decision	 tree	 to
reflect	 the	data	used	within	 this	 experiment,	while	 libraries	 such	as	 csv,	 io,	 os
and	requests	allow	the	modules	to	download	and	read	the	extrapolated	data	with
ease.

5.5.5	DATASET

The	 data	 used	within	 this	 project	was	 primarily	 extrapolated	 from	 data	 of	 the
winner	 results	 from	 the	 Tetris	 World	 Championships.	 Due	 to	 the	 fact	 that
previous	years	represent	data	as	only	image	screenshots	of	spreadsheets,	the	data
had	to	be	manually	transcribed	into	other	comma-separated	value	spreadsheets.
The	data	was	extrapolated	from	the	spreadsheets	into	a	Google	Spreadsheet	and
saved	into	a	comma-sepearted	value	file.	Extrapolated	entries	included	a	player’s
name,	composite	score,	rank,	rounds	won,	and	the	year	the	game	took	place.

5.5.6	RESULTS

To	put	 the	 results	 into	better	 interpration,	 there	are	various	mathematical	 ideas
that	can	help	explain	the	actual	importance	or	usefulness	of	relationships	shown.
Most	 importantly	when	 it	 comes	 to	 our	 experiment	 is	 the	 following	 for	 linear
regression	models	and	data	trees.

Correlation	Coefficient.	Denoted	by	R,	a	correlation	coefficient	measures
the	strength	of	linear	relationships	of	a	scatter	plot.	If	R	is	close	to	-1,	then	a
strong	negative	linear	relationship	exists.	Likewise	a	+1	indicates	a	strong
positive	linear	relationship.	However,	if	R	is	closer	to	zero,	then	it	indicates
that	a	linear	relationship	isn’t	very	present	[42].

R	is	calculated	as	follows:	R =

Determination	 Coefficient.	 Denoted	 by	 R^2,	 the	 coefficient	 of
determination	how	much	variation	of	data	has	been	explained	by	the	model.
The	 closer	 this	 value	 is	 to	 one,	 the	 better.	 An	R^2	 that	 is	 less	 then	 zero
indicates	that	it	is	a	poorly	fit	model,	and	the	reason	this	is	such	is	that	we
have	used	bad	constraints	or	a	made	poor	choice	in	model	43.

∑ ((x−x̄) (y−ȳ)

∑ (x−x̄)2∑ (y−ȳ)2

SS

R^2	is	calculated	as	follows:	R2 = 1 −

The	following	table	shows	various	points	of	data	found	based	on	the	graphs.

Table	3:	Linear	Regressor

Graph	Type Slope Intercept R
Value

R
Squared

P
Value

Standard
Error

Rank	vs.	Year 0.480 -950.059 0.100 0.010 0.129 0.129
Rank	vs.	Score -8.474 24.648 -0.492 0.242 1.495 0.001
Rank
vs.	Rounds
Won

-6.928 29.911 -0.896 0.802 4.607 0.226

With	the	correlation	coefficients	of	the	graph,	most	of	the	relationships	we	found
did	not	have	much	importance.	As	we	can	tell,	the	R	value	of	Rank	vs.	Year	was
closer	 to	 zero,	 indicating	 that	 there	 is	 not	 any	 strength	 in	 a	 linear	 relationship
with	the	two	statistics.	In	the	Rank	vs.	Score	graph	it	indicates	a	middle-leve	of
strength	with	R	=	-0.492.	This	suggests	a	negative	linear	relationship	that	isn’t	so
strong,	but	it	is	expected	since	ranks	are	actually	lower	in	number,	meaning	1st
place	 is	actually	 the	highest,	but	32nd	place	has	a	higher	number.	That	 is	why
when	discussing	them	we	look	at	the	R^2	value	instead,	which	is	positive.	This
carries	 over	 when	 discussing	 with	 Rank	 vs.	 Rounds	Won,	 as	R	 =	 -0.896.	 As
expected,	 a	 person	 with	 a	 higher	 rank	 has	 won	 more	 rounds,	 so	 this	 is	 as
expected.

Moving	on,	we	can	discuss	the	other	model	used,	the	decision	tree.	The	decision
tree	 helps	 us	 understand	 the	 actual	 meaning	 of	 any	 relationships	 between
variables	and	whether	or	not	they	are	of	any	real	importance.	The	primary	way
that	we	evaluate	this	is	by	using	the	following:

Gini	Coefficient.	 Denoted	 by	 it’s	 name,	Gini,	 Gini	 coefficients	 are	 used
with	decision	tree	algorithms	to	measure	the	effectiveness	of	branches	in	a
data	tree.	In	a	good	model,	we	expect	these	to	be	closer	to	zero	towards	the
leaves	of	a	data	tree	[44].

Gini	is	calculated	as	follows:	Gini = 1 −∑n
k=1 p

2k

SSRes

SSTotal

Here	is	a	graph	that	represents	the	decision	tree	found	within	the	experiment.

Figure	 9:	 A	 more	 readable	 image	 can	 be	 found	 at
https://i.imgur.com/mLXv6sU.png

At	the	root	node	the	Gini	coefficient	was	0.238	for	a	sample	size	of	232	samples.
Moving	 towards	 the	 true	 side	 of	 the	 graph,	 we	 found	 that	 Gini	 coefficients
gradualy	become	closer	to	zero,	with	last	branching	node	to	only	contain	a	Gini
coefficient	of	0.037.	It	should	be	noted	that	the	data	tree	node	is	very	lopsided.
This	 could	 possibly	 indicate	 that	 the	 computational	 cost	 per	 each	 decision	 is
rather	high	[44].

5.5.7	CONCLUSION

The	 deductions	 made	 from	 both	 of	 these	 experiments	 must	 be	 approached
differently,	 since	 they	are	 seperate	models.	According	 to	 the	chart,	we	can	see
that	the	R	squared	value	for	Rank	vs.	Year	became	0.010,	for	Rank	vs.	Score	it
was	 0.242,	 and	 for	Rank	 vs.	Rounds	Won	 it	was	 0.803.	 Table	 3.	 This	 should
come	as	no	real	suprise,	since	we	expect	that	any	person	who	won	more	rounds
has	a	higher	rank	then	the	others	who	did	not	win.	We	know	that	from	the	rather
low	values	comparatively	 for	Score	and	Year	 that	 there	does	not	 seem	 to	be	a
strong	linear	relationship	between	Rank	vs.	Year	and	Rank	vs.	Score.

As	 for	 the	data	 tree	model,	 it	was	discovered	 that	 the	Gini	 coefficients	 for	 the
model	 were	 indeed	 closer	 to	 zero	 but	 that	 the	 data	 tree	 itself	 was	 heavily
lopsided	 Figure	 9.	 This	 suggests	 that	 although	 their	 may	 be	 vague	 linear
relationship	when	classifying	 the	elements	of	 the	data	 tree,	 it	has	high	cost	 for
it’s	 usage,	 suggesting	 it	 may	 not	 fit	 to	 be	 a	 very	 useful	 model.	 The	 Gini
coefficient	at	the	first	branch	was	0.238,	and	the	Gini	coefficient	at	the	last	one
was	 0.37.	 Pruning	 of	 unnessecary	 leaves,	 mainly	 any	 branches	 whose	 Gini
coefficients	are	already	zero,	could	help	this	matter	[44].

5.5.8	SPECIFICATION
swagger:	"2.0"

info:

		version:	"1.0.0"

		description:	"Analyzes	Tetris	games	from	the	Tetris	World	Championships"

		termsOfService:	"http://swagger.io.terms"

		contact:

				name:	"Tetris	Score	Analyzer"

				email:	"zwlevy@iu.edu"

		license:

				name:	"Apache	2.0"

				url:	"http:///www.apache.org/licenses/LICENSE-2.0"

host:	"localhost:8080"

5.6	POLITICAL	BIAS	AND	VOTING	TRENDS	☁�
Mercedes	Olson	Jarod	Saxberg
mercolso@iu.edu	jsaxberg@iu.edu
Indiana	University
hid:	sp19-222-96	sp19-222-100
github:	☁�
code:	☁�

basePath:	"/cloudmesh/ai/tetris"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/lin_reg/download/<output>:

				get:

						operationId:	project-code.linear_regressor.download

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"OK"

										shema:	{}

		/lin_reg/read:

				get:

						operationId:	project-code.linear_regressor.read_csv

						produces:

								-	"application/txt"

						responses:

								"200":

										description:	"OK"

										schema:	{}

		/lin_reg/analyze:

				get:

						operationId:	project-code.linear_regressor.linear_regression

						produces:

								-	"application/png"

						responses:

								"200":

										description:	"OK"

										schema:	{}

		/dt/download/<output>:

				get:

						operationId:	project-code.data_tree.download

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"OK"

										schema:	{}

		/dt/analyze:

				get:

						operationId:	project-code.data_tree.data_tree

						produces:

								-	"application/png"

						responses:

								"200":

										description:	"OK"

										schema:	{}

https://github.com/cloudmesh-community/sp19-222-100/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-100/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-100/tree/master/project-code

5.6.1	ABSTRACT

Sklearn’s	K-Nearest	 Neighbors	 algorithm	was	 used	 to	 train	 a	 classifier	 which
determines	 if	 a	 presidential	 candidate	would	win	 or	 lose	 an	 election	 based	 on
their	 support	 or	 opposition	 to	 ten	 issues-healthcare,	military,	 education,	 taxing
the	 wealthy/businesses,	 women’s	 rights,	 globalism,	 gun	 rights,	 infrastructure,
minority	 rights,	 and	 immigration.	 Correlations	 were	 attempted	 to	 be	 made
between	the	algorithm	results	and	actual	presidential	election	results.

5.6.2	INTRODUCTION

K-Nearest	 Neighbors	 (KNN)	 is	 a	 basic	 classification	 algorithm.	 It	 is	 non-
parametric,	so	it	does	not	make	any	underlying	assumptions	about	the	distribuion
of	data.	A	workflow	for	a	typical	KNN	algorithim	is	as	follows:

Store	training	samples	in	an	array
Calculate	 Euclidean	 distance	 between	 the	 test	 data	 point	 and	 all	 training
data	points
Make	a	set	of	the	smallest	distances	obtained
Return	the	majority	label	from	the	set

The	algorithm	finds	the	training	data	point	that	is	most	similar	to	the	testing	data
point.	 Once	 found,	 it	 determines	 the	 classification	 of	 the	 test	 data	 from	 the
classification	 from	 the	 nearest	 training	 data.	 This	 was	 used	 with	 a	 dataset
containing	 ten	 features	 that	will	 determine	one	 classification.	The	 features	 and
classification	 are	 aligned	 so	 that	 the	 algorithm	 will	 attempt	 to	 predict	 if	 a
candidate	would	win	an	election	based	on	their	support	or	opposition	of	the	ten
features.

5.6.3	REQUIREMENTS

In	 order	 to	 run	 this	 project,	 docker	 must	 be	 installed	 and	 working.	 Once
complete,	 a	 docker	 account	 must	 be	 created	 to	 use	 docker.	 After	 creating	 an
account,	download	the	Makefile	and	Dockerfile	to	a	new	directory.	To	build	the
docker	 container,	 run	 the	 command	 make	docker-all.	 The	 Docker	 container	 will
download	the	necessary	python	libraries	found	within	requirements.txt	and	then
start	the	REST	service	on	its	own.	The	endpoints	will	then	be	available	to	access

through	a	web	browser	or	curl	client.

5.6.4	DESIGN

The	design	of	 this	project	 is	quite	 simple	 for	people	 to	use.	From	a	high-level
perspective,	all	a	user	needs	to	do	is	build	a	docker	container	and	proceed	to	the
endpoints	defined.	To	break	this	down,	the	project	is	split	up	into	three	parts:	the
python	 code	 containing	 the	machine	 learning	 logic,	 the	REST	API	 connecting
the	python	code	to	a	website	that	can	be	navigated	to,	and	a	docker	container	that
houses	 all	 of	 the	 files	 necessary	 for	 the	 project.	 Below	 each	 part	 will	 be
discussed	in	more	detail.

5.6.4.1	Python

This	 project	 makes	 use	 of	 sklearn’s	 K-Nearest	 Neighbors	 algorithm	 [45]	 to
perform	 machine	 learning	 on	 the	 dataset.	 Sklearn	 allows	 easy	 use	 of	 many
machine	 learning	 algorithms.	Using	 their	K-Nearest	Algorithm	 is	 as	 simple	 as
using	the	lines:

With	 the	 use	 of	 that	 code,	 everything	within	 the	 scope	 of	 this	 project	 can	 be
completed.	 When	 users	 pass	 their	 own	 hypothetical	 candidate	 with	 ten
arguments,	 the	arguments	are	added	to	an	array	that	 is	 then	passed	through	the
predict	function	and	the	classifier	determines	if	the	candidate	would	win	or	lose
based	on	the	given	arguments.

5.6.4.2	REST	Service

The	REST	Service	allows	simple	connection	between	backend	python	code	and
a	frontend	website/API	where	users	can	pass	data	in	and	receive	it	back	as	a	json
formatted	object.	People	can	easily	access	the	classifier	through	the	API	without
the	need	 to	build	 it	 and	 run	 it	on	 their	own.	Endpoints	 are	developer-designed
urls	 that	 can	 be	 navigated	 to	 so	 users	 can	 run	 the	 classifier	 and	 other	 useful
features.	The	basepath	is	what	prefixes	all	other	endpoints;	it	can	be	thought	of
as	 a	 top	 level	 directory	 and	 all	 of	 the	 endpoints	 are	 files	within	 the	 directory

classifier	=	KNeighborsClassifier(n_neighbors=5)

classifier.fit(x_train,	y_train)

pred	=	classifier.predict(x_test)

structure.	The	specification	in	YAML	that	showcases	the	basepath	and	endpoints
used	can	be	found	in	Section	5.6.10.	For	readability	and	length	the	endpoint	that
allows	a	user	 to	perform	a	custom	classification	used	abbreviations.	To	clarify
the	abbreviations	 the	end	point	 is	provided	next	with	 the	abbreviations	 spelled
out.

5.6.4.3	Docker

Docker	containers	were	used	in	this	project	to	create	an	image	that	held	all	of	the
requirements	to	run	this	project.	Containers	are	good	to	use	because	it	eliminates
the	 requirement	 of	 downloading	 all	 the	 necessary	 files	 to	 a	 personal	 computer
and	allows	them	to	be	easily	removed	by	deleting	the	image.	It	also	allows	one
common	operating	 system–in	 this	 case,	Ubuntu–to	be	used	 across	 all	 projects,
thus	eliminating	the	troubles	that	can	arise	from	a	mixture	of	operating	systems.

5.6.5	DATASET

The	dataset	 for	 this	project	had	 to	be	built	 from	scratch	as	 there	were	not	 any
easily	accessible	datasets	with	the	features	desired.	In	order	to	create	the	dataset,
google	sheets	was	used	to	input	data,	and	then	the	spreadsheet	was	downloaded
as	a	csv	file.	After	converting	the	dataset	to	a	csv	file,	it	was	then	uploaded	to	a
website	 that	 can	 be	 accessed	 through	 the	 python	 requests	 library.	 The
information	 obtained	 from	 the	 Federal	 Election	 Commissions	 [46]	 website
included	 the	 top	 4	 presidential	 candidates	 based	 off	 the	 total	 votes	 and
percentage	of	votes	received	from	the	years	1988	to	2016	with	their	respective
parties.	After	selecting	the	candidates	ten	topics	were	chosen.	The	topics	include
healthcare,	military,	 education,	 taxing	 the	wealthy,	women’s	 rights,	 globalism,
gun	 rights,	 infrastructure,	 minority	 rights,	 and	 immigration.	 Each	 presidential
candidate	 received	 a	 1	 or	 0	 if	 they	 supported	 or	 opposed	 a	 topic,	 based	 on
research	 from	 the	 website	 OnTheIssues	 [47]	 and	 wikipedia	 pages	 about	 the
respective	campaigns.	An	example	would	be	if	the	candidate	had	a	0	in	the	3rd
element	 and	1	 in	 the	 5th	 element,	 their	 actions	 in	 the	 past	 show	opposition	 to
education	 and	 support	 for	 women’s	 rights.	 One	 final	 thing	 to	 take	 into
consideration	 when	 making	 this	 data	 is	 personal	 bias	 and	 the	 limitations	 of
records	can	affect	the	results.

	/run/custom/<neighbors>/<healthcare>/<military>/<education>/<tax

	wealthy\>/<womens	rights>/<globalism>/<gun

	rights>/<infrastructure>/<minority	rights>/<immigration>

5.6.6	RESULTS

It	 is	difficult	 to	draw	conclusive	results	 from	this	machine	 learning	application
primarily	because	of	the	limited	size	of	the	dataset.	There	are	only	32	entries	in
the	dataset,	so	the	algorithm	does	not	have	a	lot	of	data	to	learn	from.	Running
the	algorithm	multiple	 times	returns	multiple	different	values	for	 the	precision,
recall,	and	f1-score.	It	is	primarily	dependent	on	which	entries	are	chosen	for	the
testing	and	 training	datasets.	The	algorithm	could	be	 improved	with	additional
candidates	dating	further	back	from	1988,	but	the	data	becomes	more	sparse	pre
1988.

Using	 the	KNN	 algorithm	 from	 sklearn	 requires	 an	 argument	 for	 n_neighbors
which	will	affect	the	accuracy	of	the	algorithm.	A	simple	loop	was	developed	to
determine	the	best	n_neighbor	argument	for	each	iteration	of	testing	and	training
datasets.	 The	 loop	 determined	 the	 error	 rate	 that	 each	 possible	 n_neighbor
argument	 produced,	 and	 creates	 a	 graph	 plotting	 the	 n_neighbor	 argument
against	the	error	rate.	Figure	10	is	a	sample	graph	generated	by	one	iteration	of
the	testing	and	training	datasets.

Figure	10:	Error	Rate	vs.	Number	of	Neighbors

5.6.7	DISCUSSION

Machine	 learning	 and	 artificial	 intelligence	 are	 both	 hot	 topics	 having	 grown
exponentially	in	popularity	during	the	past	ten	years–many	people	are	racing	to
find	 new	 ways	 to	 apply	 these	 algorithms	 to	 real-world	 scenarios.	 An	 area	 of
interest	for	this	project	is	how	machine	learning	applies	to	politics,	specifically
data-driven	 politics.	 The	 application	 has	 been	 difficult,	 however.	As	 shown	 in
[48],	 it	 is	 difficult	 to	 draw	 correlations	 between	 analysis	 results	 and	 electoral
outcomes.	Prior	research	has	been	done	connecting	measures	of	public	opinion
measured	from	polls	with	sentiment	measured	from	text	as	shown	in	[49],	and	it
shows	 promise	 having	 correlations	 as	 high	 as	 80%.	 The	 research	 shows	 how
sentiment	from	text	could	be	used	as	a	substitute	for	typical	polling	and	predict
movement	in	the	polls;	however,	using	Twitter	as	the	source	for	text	nowadays
would	create	 issues	 as	 the	amount	of	bots	on	Twitter	has	grown	exponentially
since	 this	 research	 was	 done	 in	 2011.	 There	 are	 other	 more	 reliable	 ways	 to
obtain	data	for	use	with	machine	learning	that	are	not	affected	in	the	ways	that

social	 media	 is.	 Combining	 typical	 polling	 with	 machine	 learning	 could	 be	 a
path	 forward	 that	might	produce	positive	 results,	 and	help	politicians	 run	 their
campaigns.	 Machine	 learning	 can	 also	 help	 voters	 make	 more	 informed
decisions	about	the	candidates	available	for	them	to	vote	on	and	the	stances	they
hold	on	certain	issues.	There	are	many	different	applications	of	machine	learning
to	political	data,	it	is	just	a	matter	of	finding	the	best	approach	and	refining	the
algorithm	until	error	rates	are	low.

5.6.8	CONCLUSION

As	stated	in	the	results	section,	it	is	difficult	to	draw	conclusions	to	the	accuracy
of	 this	application	of	machine	learning	because	there	 is	only	32	entries	 total	 in
the	dataset.	The	precision,	 recall,	 and	 f1-scores	varied	each	 time	 the	algorithm
ran.	 Likewise,	 the	 best	 n_neighbors	 argument	 varied	 with	 each	 testing	 and
training	dataset	used.

To	 improve	 the	 results,	more	candidates	 from	past	elections	could	be	added–it
would	 require	 more	 in	 depth	 research	 on	 the	 topics	 they	 support	 as	 the
information	 is	more	difficult	 to	access.	 It	would	also	 improve	over	 time	as	 the
amount	 of	 candidates	 increases	 and	 their	 campaigns	 would	 be	 better
documented.	The	predictions	will	gradually	get	more	accurate	as	 time	goes	on
and	more	data	is	collected.

5.6.9	WORK	BREAKDOWN

Going	through	candidates	and	creating	the	dataset	was	an	even	contriubtion	from
both	 contributors.	 The	 coding	 aspect	 was	 spilt	 in	 a	 way	 that	 Jarod	 set	 up	 the
KNN	 algorithm	 and	 Mercedes	 set	 up	 the	 training	 and	 testing	 part	 of	 the
algorithm.	 The	 dockerfile	 was	 worked	 on	 by	 both	 authors,	 and	 running	 and
testing	the	docker	containers	was	done	on	Mercedes’s	computer.	The	report	was
broken	 down	 in	 segments	 with	Mercedes	writing	 the	 initial	 outline	 and	 Jarod
working	on	the	abstact.	Both	colaborators	worked	evenly	on	writing	and	editing
the	rest	of	the	sections	of	the	report.

5.6.10	SPECIFICATION
swagger:	"2.0"

info:	

		version:	"0.0.1"

5.7	SPAM	ANALYSIS	WITH	SPAMALOT	☁�

		title:	"presidential	support"

		description:	"Attempts	to	determine	how	much	support	a	candidate	will	receive	based	on	their	viewpoints"

		license:	

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/cloudmesh/ai/voting"

schemes:	

		-	"http"

consumes:	

		-	"application/json"

produces:	

		-	"application/json"

paths:

		/run/custom/<neighbors>/<hlt>/<mil>/<edu>/<tax>/<wmr>/<glb>/<gnr>/<inf>/<mnr>/:

				get:

						tags:

								-	RUN_CUSTOM

						operationId:	run.run_custom

						description:	"Runs	an	analysis	based	on	given	arguments"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Run	custom	analysis"

										schema:	{}

		/run/test:

				get:

						tags:

								-	RUN_TEST

						operationId:	run.run_test

						description:	"Runs	an	analysis	based	on	test/train	data	from	dataset."

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Run	test	analysis"

										schema:	{}

		/run/neighbors:

				get:

						tags:

								-	RUN_NEIGHBORS

						operationId:	run.neighbors

						description:	"Determines	best	neighbor	argument	to	use	for	KNN	algorithm"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Run	neighbor	search"

										schema:	{}

		/data/download/<output>:

				get:

						tags:

								-	DATA

						operationId:	data.download

						description:	"Downloads	data	from	an	external	location"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"Data	info"

										schema:	{}

		/data/show/graph:

				get:

						tags:

								-	DATA_GRAPH

						operationId:	data.graph

						description:	"Shows	the	graph	generated	from	the	neighbors	endpoint"

						produces:

								-	"application/png"

						responses:

								"200":

										description:	"Show	graph"

										schema:	{}

https://github.com/cloudmesh-community/sp19-222-101/blob/master/project-report/report.md

Eric	Bower,	Tyler	Zhang
epbower@iu.edu,	tjzhang@iu.edu
Indiana	University	Bloomington
hid:	sp19-222-101
Github:	☁�
code:	☁�

Keywords:	Spam

5.7.1	ABSTRACT

Spam	 emails	 are	 an	 issue	 in	 cybersecurity	 because	 they	 can	 contain	 phishing
scams	 or	malware	 that	 can	 steal	 private	 information	 from	 the	 user,	which	 can
often	 lead	 to	 identity	 theft.	 These	 emails	 are	 particularly	 dangerous	 because
many	 are	 seemingly	 innocuous.	We	 are	 exploring	 the	 possibility	 of	 predicting
malicious	intent	 in	emails	by	using	a	machine	learning	algorithm.	We	chose	to
use	the	Support	Vector	Machines	(SVM)	algorithm	to	classify	spam	emails	due
to	 its	 superior	 classification	 performance	 over	 another	 commonly	 used
classification	 model,	 the	 Naive	 Bayes	 algorithm.	 Successfully	 classifying	 a
malicious	email	can	prevent	harmful	situations	for	users.

5.7.2	INTRODUCTION

The	goal	is	the	creation	of	a	service	that	can	classify	spam	emails.	By	the	term
“spam	email”,	we	refer	to	emails	that	are	sent	with	malicious	intent	against	the
recipient.	Emails	without	malicious	intent	will	be	referred	to	as	a	“ham	email”.
Common	 forms	 of	malicious	 intent	 that	 steal	 or	 restrict	 a	 user’s	 personal	 data
include	phishing	and	malware.

Phishing	 describes	 a	 process	 in	 which	 an	 attacker	 impersonates	 a	 trustworthy
third	party	in	an	attempt	to	obtain	sensitive	information	[50].	In	a	recent	phishing
attack,	 a	 link	 was	 sent	 to	 Snapchat	 users	 telling	 them	 to	 enable	 two-step
authentication.	 This	 link	 collected	 the	 login	 information	 of	 more	 than	 50,000
Snapchat	 users.	Users	were	 under	 the	 impression	 that	 they	were	making	 their
private	 information	 more	 secure,	 but	 they	 instead	 exposed	 their	 personal
information	to	hackers,	demonstrating	how	phishing	attacks	can	be	particularly

https://github.com/cloudmesh-community/sp19-222-101/blob/master/project-report/report.md
https://github.com/cloudmesh-community/sp19-222-101/tree/master/project-code

deceptive.

Spam	emails	can	also	have	dangerous	attachments	that	contain	malware.	When
these	attachments	are	downloaded,	 the	malware	 is	unloaded	onto	 the	computer
system.	A	common	example	of	malware	 is	called	 ransomware,	which	encrypts
local	files	and	network	files,	effectively	preventing	the	user	from	accessing	their
own	files.	The	ransomware	will	ask	the	user	to	pay	in	exchange	for	decrypting
their	 files.	 Even	 if	 the	 user	 pays,	 the	 attacker	 still	 has	 control	 over	 the	 user’s
data,	which	may	lead	to	identity	theft	[51].

An	 email	 classifier	 can	 prevent	 users	 from	 being	 hit	 by	 phishing	 scams	 and
malware.	We	used	a	machine	learning	algorithm	to	classify	malicious	emails.	An
important	 consideration	 for	 the	 user	 is	 to	 minimize	 misclassification	 errors.
When	 creating	 our	 service,	 we	 need	 to	 be	 careful	 to	minimize	 the	 number	 of
spam	emails	that	are	erroneously	labeled	as	ham	and	the	number	of	ham	emails
that	 are	 erroneously	 labeled	 as	 spam.	 If	misclassification	occurs,	 the	user	 is	 at
risk	of	opening	dangerous	spam	emails	and	missing	important	ones.

5.7.3	THE	ALGORITHM

We	considered	the	Naive	Bayes	and	Support	Vector	Machine	(SVM)	algorithms
for	our	 implementation	of	spam	classification.	Naive	Bayes	and	SVM	are	both
supervised	learning	algorithms,	which	means	that	they	are	trained	with	data	that
is	 already	 labeled.	Both	 algorithms	have	 strengths	 and	weaknesses.	The	Naive
Bayes	algorithm	generally	is	faster	and	less	computationally	complex	[52].	SVM
is	 slower	 than	Naive	 Bayes	 but	 typically	 tends	 to	 be	more	 statistically	 robust
[53].	We	experimented	with	both	algorithms	and	chose	which	one	to	use	based
on	their	performance	and	respective	statistics.

5.7.3.1	Naive	Bayes

Naive	 Bayes	 classifiers	 are	 very	 commonly	 used	 for	 spam	 filtering	 and
document	 classification	 problems	 [54].	 The	 Naive	 Bayes	 algorithm	 relies	 on
Bayes’	 probability	 theorem,	 which	 expresses	 a	 relationship	 between	 the
probability	of	the	occurrence	of	an	event	c	given	the	occurrence	of	other	events,	
x1	 through	 xn	 [52].	 Representing	E	 as	 (x1,x2, ...xn),	 the	 probability	 of	 an
event	c	given	E	is	given	in	Equation	5	from	[52].

(|) ()

P (c|E)= (5)

In	terms	of	classification,	the	vector	E	would	be	the	features	of	the	data	point,
and	c	 is	 the	 classification	of	 that	 data	point	 (either	ham	or	 spam).	To	create	 a
binary	 classifier,	 with	 two	 classifications	 being	 c = spam	 and	 c = ham,	 the
classification	of	a	data	point	with	a	feature	vector	E	is	given	in	Equation	6	from
[52].

fb(E)= >= 1 (6)

The	 terms	 P (c = spam|E)	 and	 P (c = ham|E)	 are	 both	 calculated	 using
Equation	5.	The	classification	is	spam	if	fb(E)	 is	greater	 than	or	equal	 to	one,
and	ham	if	fb(E)	is	less	than	one.	Other	researchers	have	found	that	the	Naive
Bayes	 classification	 model	 has	 decent	 precision	 and	 recall	 values	 when
classifying	spam	emails.	The	following	Figure	11	shows	 the	results	of	such	an
experiment	of	a	Naive	Bayes	classifier	run	on	a	data	set	of	2893	total	messages:

Figure	11:	NB	Ling-Spam	Results[55]

5.7.3.1.1	Metrics

In	Figure	11,	 two	important	performance	metrics	of	 the	Naive	Bayes	algorithm
were	recall	and	precision,	which	are	both	standard	metrics	used	to	evaluate	the
effectiveness	 of	 a	 model.	 Recall	 is	 defined	 as	 the	 number	 of	 true	 positives
divided	by	the	sum	of	true	positives	and	false	negatives.	To	put	that	definition	in

P (E|c)P (c)

P (E)

P (c = spam|E)

P (c = ham|E)

the	 context	 of	 a	 spam	 classifier,	 recall	 measures	 the	 ratio	 of	 spam	 emails
correctly	 identified	 as	 spam	compared	 to	 the	number	of	 actual	 spam	emails	 in
the	data	set.

Precision	is	defined	as	the	number	of	 true	positives	divided	by	the	sum	of	true
positives	 and	 false	 positives.	 To	 put	 that	 definition	 in	 the	 context	 of	 a	 spam
classifier,	 precision	 measures	 the	 ratio	 of	 spam	 emails	 correctly	 identified	 as
spam	compared	to	the	number	of	emails	the	classifier	thinks	are	spam.	For	both
metrics,	 higher	 percentages	 show	 a	 superior	 model.	 The	 figure	 Figure	 11
demonstrates	 decently	 high	 percentages	 for	 recall	 and	 precision	 when	 using
Naive	Bayes	as	a	spam	email	classifier.

5.7.3.2	Support	Vector	Machines	(SVM)

SVM	 is	 also	 used	 to	 work	 in	 text	 classification	 [54].	 SVM	models	 construct
hyper-planes	 in	 the	 feature	 space	 of	 the	 dataset	 which	 can	 be	 used	 for
classification.	 The	 hyperplane	 is	 chosen	 by	 finding	 the	 optimal	 plane	 that
maximizes	its	margins	of	separation	between	points	of	all	classes	[56].	In	other
words,	 data	 points	 are	 separated	 from	 the	 others	 based	 on	 their	 features	 in	 an
optimal	manner.

To	 better	 illustrate	 how	SVM	works,	 one	 can	 imagine	 all	 points	 of	 a	 data	 set
plotted	 based	 on	 their	 attributes.	 The	 data	 points	 that	 belong	 to	 a	 certain
classification	will	generally	be	plotted	together	in	regions	because	they	normally
have	 similar	 attributes.	 A	 hyperplane	 is	 an	 imaginary	 divider	 between	 these
classification	 regions	 that	 is	mathematically	 calculated	 based	 on	 distance.	 The
following	 figure	 Figure	 12	 shows	 a	 visualization	 of	 a	 two-dimensional
hyperplane:

Figure	12:	SVM	2D	Visualization[56]

This	figure	shows	a	divider	between	general	regions	of	points	classified	as	blue
and	 points	 classified	 as	 red.	Notice	 that	 the	 hyperplane	 is	 imperfect;	 there	 are
some	 red	 points	 on	 the	 blue	 side	 of	 the	 hyperplane,	 and	 there	 are	 some	 blue
points	 on	 the	 red	 side.	 Such	 error	 is	 inevitable,	 but	 it	 can	 be	 minimized
mathematically.	To	make	a	classification	on	a	new	piece	of	data,	the	algorithm
plots	the	attributes	of	a	new	point	and	makes	a	prediction	based	on	which	side	of
the	hyperplane	the	point	falls	on.

SVM	algorithms	are	very	effective	classifiers	when	working	with	datasets	 that
utilize	a	large	number	of	features	[56].	In	the	case	of	emails,	we	can	calculate	the
frequency	of	words	contained	in	the	email,	which	will	be	a	vector	with	a	large
number	of	 features	 [54].	As	 a	 result,	 SVM	 is	 an	 appropriate	model	 to	 classify
spam	emails	due	to	the	high	dimensional	dataset.

5.7.4	THE	DATA	SET

The	data	set	used	to	train	the	machine	learning	algorithm	is	taken	from	a	project
that	 tested	 the	 effectiveness	 of	 five	 different	 variations	 of	 Naive	 Bayesian
classifiers	 on	 classifying	 spam	 emails.	 It	 contains	 the	 text	 of	 ham	 and	 spam
messages	 from	 a	member	 of	 Enron	 corpus	with	 random	 ham-spam	 ratio	 [57].
These	emails	are	all	labeled	as	ham	or	spam.

The	raw	messages	of	each	email	generally	contain	 too	much	information	 to	be
considered	useful	to	train	the	classifier.	In	particular,	raw	email	message	text	has
many	 characters	 that	 contribute	 little	 to	 the	 classification	 of	 the	 email.	 To
counteract	 this,	 we	 removed	 all	 non-alphabetical	 characters	 from	 the	 data	 set.
Also,	we	removed	any	words	that	were	only	one	character	long,	such	as	‘a’	and
‘I’.	Finally,	we	removed	all	instances	of	the	word	‘the’,	which	turned	out	to	be
one	of	the	most	common	words	in	all	the	training	emails.

It	 has	 been	 shown	 that	 the	 process	 of	 lemmatization	 improves	 classification
performance	 for	 spam	filtering	 [55].	Lemmatization	 is	 the	process	of	grouping
together	 variations	 of	 the	 same	 root	 word.	 For	 instance,	 a	 lemmatizer	 would
group	 all	 instances	 of	 the	 words	 “include”,	 “includes”,	 and	 “included”	 in	 the
same	 category.	 The	 data	 set	 that	 we	 used	 to	 train	 our	 algorithm	 was	 already
lemmatized,	so	we	did	not	need	to	go	through	this	process	ourselves.

Once	the	email	texts	were	filtered,	we	then	created	vectors	of	word	frequencies
from	 each	 email.	 These	 are	 treated	 as	 the	 features	 for	 the	 machine	 learning
model.	Our	dataset	was	already	labeled	as	“spam”	or	“ham”,	making	it	possible
to	train	the	SVM	and	Naive	Bayes	supervised	learning	models.	We	shuffled	the
list	of	word	frequency	vectors	from	the	dataset	and	randomly	chose	80%	of	these
vectors	to	train	both	the	SVM	and	Naive	Bayes	models.	We	used	the	remaining
20%	of	these	vectors	to	assess	the	quality	of	each	model.

5.7.5	MODEL	RESULTS

The	confusion	matrix	generated	from	the	Naive	Bayes	algorithm	is	represented
in	Figure	13.

Figure	13:	NB	Confusion	Matrix

The	 confusion	 matrix	 generated	 from	 the	 SVM	 algorithm	 is	 represented	 in
Figure	14.

Figure	14:	SVM	Confusion	Matrix

We	 can	 use	 the	 above	 confusion	 matrices	 to	 obtain	 metrics	 for	 each	 model.
Recall	measures	the	ratio	of	spam	emails	correctly	identified	as	spam	compared
to	the	number	of	actual	spam	emails	in	the	data	set.	For	the	Naive	Bayes	model,
this	 value	 is	 = 0.487.	 For	 the	 SVM	 model,	 this	 value	 is	

= 0.866.

Precision	 measures	 the	 ratio	 of	 spam	 emails	 correctly	 identified	 as	 spam
compared	to	the	number	of	emails	the	classifier	thinks	are	spam.	For	the	Naive
Bayes	model,	 this	value	is	 = 0.915.	For	 the	SVM	model,	 this	value	 is	

= 0.716.

193
203+193

343
53+343

193
18+193

343
136+343

Although	 the	Naive	 Bayes	method	 has	 higher	 precision	 than	 the	 SVM,	 it	 has
significantly	lower	recall.	The	impact	this	would	have	on	the	user	is	dangerous:
the	confusion	matrix	Figure	13	shows	that	the	Naive	Bayes	model	flags	a	great
number	of	spam	emails	as	ham,	exposing	the	user	to	more	malicious	emails.	On
the	other	hand,	the	SVM	method	has	a	significantly	higher	recall	value,	but	at	a
lower	precision	value.	The	consequences	of	this	are	not	as	dire	for	the	user:	the
confusion	matrix	Figure	 14	 shows	 the	 SVM	model	 flags	more	 ham	 emails	 as
spam.	While	this	is	inconvenient	for	the	user,	the	SVM	method	is	safer	because
it	would	expose	fewer	malicious	emails	to	the	user,	at	the	cost	of	flagging	benign
emails	as	spam	more	often.	For	this	reason,	we	decided	to	use	the	SVM	model
for	our	classification	method.

5.7.6	IMPLEMENTATION

5.7.6.1	The	Server

We	 used	 Swagger	 OpenAPI	 to	 create	 our	 server.	 This	 package	 lets	 us
conveniently	 define	 our	 server’s	 endpoints	 and	 REST	 API	 operations	 in	 a
concise	YAML	file.	 In	addition	 to	Swagger	OpenAPI,	we	also	greatly	utilized
the	 Flask	 package.	 In	 our	 YAML	 file,	 our	 server	 has	 one	 endpoint	 called
‘upload’,	 which	 acts	 as	 a	 REST	 POST	 operation.	 The	 upload()	 function
corresponding	to	this	endpoint	is	defined	in	a	file	called	gatherData.py.	From	the
Flask	package,	upload()	uses	Flask.request()	 to	 read	 in	 a	user’s	 text	 file.	Once
the	file	has	been	accepted,	the	text	file	is	processed	and	the	classification	occurs.
The	results	of	the	classification	are	then	returned	and	displayed	to	the	user	as	an
HTML	 page	 using	 Flask.render_template().	 The	 upload()	 function	 and	 the
classification	process	is	explained	in	more	detail	in	the	next	section.

It	should	be	noted	that	the	‘upload’	endpoint	cannot	be	reached	directly	by	URL;
it	can	only	be	accessed	by	pressing	a	JavaScript	button	on	the	home	page	of	the
server,	which	then	calls	the	Flask.request()	function	and	starts	the	classification
process.	 If	 a	user	 attempts	 to	 access	 the	 ‘upload’	 endpoint	via	URL	 instead	of
clicking	the	button,	they	will	be	taken	to	an	error	page.	Once	a	user	successfully
sees	 the	 classification	 results,	 they	 are	 given	 the	 option	 to	 return	 to	 the	 home
page	 via	 another	 JavaScript	 button,	 where	 they	 can	 upload	 another	 email	 for
classification.

We	 created	 a	 Dockerfile	 and	 a	 Makefile	 that	 contains	 all	 the	 necessary
commands	 needed	 to	 host	 the	 server.	 This	 Dockerfile	 runs	 Ubuntu	 and	 runs
commands	to	clone	files	from	our	Github	to	get	the	service	running.	Running	the
server	 in	 a	 container	 such	 as	Docker	 is	 beneficial	 because	 the	 installation	will
not	 interfere	 with	 the	 host	 system,	 and	 the	 container	 is	 easy	 to	 remove	 once
installed.

The	following	diagram	Figure	15	shows	the	basic	workflow	of	our	server:

Figure	15:	Classification	Flowchart

5.7.6.2	The	Upload	Function	and	Classification

The	upload()	 function	handles	 file	uploading	and	makes	other	 function	calls	 to
perform	classification.	The	file	 is	 first	 retrieved	by	utilizing	 the	Flask.request()
function	 from	 the	 Flask	 package.	 This	 file	 must	 have	 a	 ‘.txt’	 extension	 and
should	contain	the	body	of	the	email	to	be	classified.

Once	 the	 file	 is	 uploaded,	 upload()	 sends	 the	 file	 to	 a	 function	 called
extract_features().	The	extract_features()	function	converts	the	email	text	into	a
word	frequency	vector.	This	vector	is	treated	as	the	features	of	the	email	and	is
used	as	an	input	for	the	SVM	model	to	classify	the	email	as	spam	or	ham.

Our	server	contains	a	previously-trained	SVM	model	file,	so	it	will	not	need	to
retrain	 the	 model	 each	 time	 a	 user	 uploads	 a	 new	 file.	 We	 used	 the	 sklearn

package	 to	 train	 an	SVM	model	on	a	 large	number	of	 emails,	 creating	a	 large
database	 of	 word	 frequency	 vectors	 and	 their	 corresponding	 labels.	 Using	 the
pickle	 package,	 we	 saved	 this	 model	 as	 a	 file	 on	 the	 server.	 When	 the
extract_features()	 function	 successfully	 returns	 a	 feature	 vector	 for	 the	 user’s
uploaded	email,	the	server	uses	the	pickle	package	to	load	the	saved	SVM	model
and	labels	the	user’s	email	as	ham	or	spam.

The	 final	 pieces	 of	 information	 that	 the	 upload()	 function	 calculates	 are
performance	 statistics	 for	 the	 SVM	model	 to	 create	 a	 confusion	matrix,	 from
which	 the	 user	 can	 calculate	model	metrics	 such	 as	 precision	 and	 recall.	 This
gives	 the	user	 insight	on	 the	performance	of	 the	SVM	model.	Once	 the	 server
has	 made	 a	 prediction	 and	 has	 performance	 statistics,	 it	 calls
Flask.render_template()	 to	 display	 an	 HTML	 file	 with	 the	 returned	 variables.
This	is	the	page	the	user	sees	after	uploading	their	email	file.

5.7.6.3	Specification

5.7.7	CONCLUSION

Our	 implementation	 of	 a	 spam	 email	 classifier	 is	 a	 building	 block	 for	 a	more
sophisticated	 spam	 filter.	 Currently,	 our	 service	 is	 only	 capable	 of	 making
predictions	 on	 one	 email	 at	 a	 time,	 and	 each	 prediction	 requires	 the	 user	 to
upload	 a	 new	 file	 containing	 the	 email	 text.	 A	more	 sophisticated	 spam	 filter
would	be	integrated	into	an	email	app	and	could	automatically	classify	incoming

swagger:	"2.0"

info:	

		version:	"0.0.1"

		title:	"spamInfo"

		description:	"An	intelligent	system	to	determine	whether	a	given	email	is	spam	or	not"

		contact:	

				name:	"Spamalot"

		license:	

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/"

schemes:	

		-	"http"

consumes:	

		-	"application/json"

produces:	

		-	"text/html"

paths:	

		/upload:

				post:

						operationId:	py_scripts.gatherData.upload

						description:	"Uploads	a	file"

						responses:

								"201":

										description:	"Upload"		

emails	as	spam.	Additionally,	our	service’s	classification	ability	is	imperfect.	As
seen	in	Figure	11,	other	researchers	achieve	superior	classification	performance
using	Naive	Bayes,	so	there	is	room	for	improvement.

In	 its	current	state,	our	 implementation	is	best	suited	for	single	users.	But	with
some	further	development,	such	as	adding	the	ability	to	classify	multiple	emails
at	 once	 and	 improving	 our	 service’s	 classification	 performance,	 a	 spam	 filter
would	 be	 a	 useful	 tool	 for	 company	 employees.	 Our	 service	 could	 prevent
employees	 from	 opening	 dangerous	 emails	 that	 could	 steal	 company
information.

6	DESSIMINTAION

6.1	TASK	6	–	DISSEMINATION	☁�
The	work	we	 are	 proposing	 is	 integrated	 into	 various	 dissemination	 activities.
This	includes	integration	of	the	activities	as	part	of	classes	taught	at	the	graduate
level	at	 Indiana	University	 to	 test	out	and	 improve	 the	components	developed.
Educational	 components	 were	 designed	 in	 a	 reusable	 fashion	 and	 added	 to	 a
Handbook	of	Cloud	Computing	and	Big	Data	for	Graduates	and	Undergraduates
distributed	in	epub	format.

Graduate:	 https://github.com/cloudmesh-
community/book/blob/master/vonLaszewski-cloud.epub
Undergraduate:	 https://github.com/cloudmesh-
community/book/blob/master/vonLaszewski-e222.epub

The	component	 is	now	also	available	as	a	compact	 topical	 focus	area	allowing
flexible	 integration	 into	 other	 educational	 activities	 such	 as	 tutorials	 and
presentations	focusing	on	specific	aspects	of	the	work	conducted.

Such	 components	 are	 available	 as	 markdown	 documents	 at	 the	 following
locations.

https://github.com/cloudmesh-
community/book/blob/master/chapters/nist/bdra.md
https://github.com/cloudmesh-
community/book/blob/master/chapters/rest/rest.md
https://github.com/cloudmesh-
community/book/blob/master/chapters/rest/swagger-codegen.md

To	 make	 the	 system	 genuinely	 reusable,	 the	 bookmanager	 can	 integrate	 the
components	 in	 a	 customizable	 document	 that	 can	 be	 generated	 by	 choice	 for
tutorials,	 classes,	 and	 individual	 learning	 experiences.	 The	 tool	 is	 called
bookmanager	and	available	on	PyPI	at

https://pypi.org/project/cyberaide-bookmanager/

https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-e222.epub
https://github.com/cloudmesh-community/book/blob/master/chapters/nist/bdra.md
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest.md
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-codegen.md
https://pypi.org/project/cyberaide-bookmanager/

6.1.1	CONFERENCE	PRESENTATION

The	work	we	conducted	in	regards	to	automated	REST	services	creation	for	Big
Data	was	presented	at	PyData	in	Indianapolis	Oct	11th

https://2019.indypy.org/pydata/

6.1.2	TASK	6.1	COMMUNITY	TESTING

The	 most	 crucial	 part	 is	 that	 we	 verified	 with	 more	 than	 20	 students	 on	 the
graduate	and	undergraduate	level	that	the	approach	we	have	chosen	is	valid	and
can	 be	 replicated	 even	with	 inexperienced	 students	 that	 do	 not	 have	 any	 prior
exposure	 to	 the	 technology	 and	 also	 have	 only	 a	 limited	 amount	 of	 time
exploring	 the	 technology.	 The	 examples	 in	 this	 handbook	 include	 at	 this	 time
results	 from	 undergraduate	 students	 showcasing	 the	 REST	 services	 that
developed	with	the	help	of	our	tutorial	and	tools.

https://2019.indypy.org/pydata/

7	RESOURCES

7.1	TASK	7	–	DEVELOPMENT	RESOURCES	☁�
We	 have	 set	 up	 some	 significant	 development	 resources	 for	 this	 project.	 This
includes	the	deployment	of	a

Swagger	cluster,	and	a
Kubernetes	cluster

In	addition,	the	projects	that	we	developed	have	been	using	docker	containers	on
the	developers’	computers.	Using	containers	has	the	advantage	that	such	services
can	be	hosted	in	a	portable	fashion	on	any	major	resource	infrastructure.

Additional	resources	have	been	used	on	the	following	cloud	infrastructures:

Chameleon	Cloud	(chameleoncloud.org)
Aws
Azure
Google

We	also	experimented	with	 IBM	Watson	which	also	could	have	been	used	 for
this	project,	but	as	we	had	ample	resources,	we	did	not	fully	explore	this	option.

8	TUTORIALS

8.1	OVERVIEW	☁�
In	this	Section	we	presenta	number	of	tutorials	that	are	related	to	this	work.

This	includes	the	following:

Automated	REST	 service	 generation	with	 eve:	A	 tutorial	 to	 create	 rest
services	with	eve.	This	tutorial	used	the	first	verion	of	the	BDRA	vol	8	to
automatically	genertate	REST	services	 from	examples.	Although	 this	was
the	easiest	way	to	generate	REST	services,	the	community	development	of
eve	was	halted	for	a	significant	period	of	 time	and	the	community	moved
on	to	OpenAPI	v1

Automated	REST	service	generation	with	codegen:	A	 tutorial	 to	create
rest	services	with	swagger	codegen.	This	tutorial	used	the	second	verion	of
the	BDRA	vol	8	 to	automatically	genertate	REST	services	from	examples
which	was	based	on	OpenAP	v2.

Automated	REST	service	generation	with	OpenAPIv3	and	conexion:	A
tutorial	 to	 create	 rest	 services	 with	 conexion	 using	 OpenAPIv3.	 This
tutorial	 used	 the	 curernt	 verion	 of	 the	 BDRA	 vol	 8	 to	 automatically
genertate	REST	services	from	examples	which	was	based	on	OpenAP	v2.

8.2	AUTOMATED	REST	SERVICE	GENERATION
WITH	EVE

8.2.1	REST	SERVICES	WITH	EVE	☁�

Next,	we	focus	on	how	to	make	a	RESTful	web	service	with	Python	Eve.	Eve
makes	the	creation	of	a	REST	implementation	in	python	easy.	More	information
about	Eve	can	be	found	at:

http://python-eve.org/

http://python-eve.org/

Although	we	do	recommend	Ubuntu	17.04,	at	this	time,	there	is	a	bug	that	forces
us	to	use	16.04.	Furthermore,	we	require	you	to	follow	the	instructions	on	how
to	 install	pyenv	and	use	 it	 to	set	up	your	python	environment.	We	recommend
that	 you	 use	 either	 python	 2.7.14	 or	 3.6.4.	We	 do	 not	 recommend	 you	 to	 use
anaconda	as	it	is	not	suited	for	cloud	computing	but	targets	desktop	computing.
If	you	use	pyenv	you	also	avoid	the	issue	of	interfering	with	your	system-wide
python	install.	We	do	recommend	pyenv	regardless	if	you	use	a	virtual	machine
or	are	working	directly	on	your	operating	system.	After	you	have	set	up	a	proper
python	 environment,	 make	 sure	 you	 have	 the	 newest	 version	 of	 pip	 installed
with

To	install	Eve,	you	can	say

As	Eve	also	needs	a	backend	database,	and	as	MongoDB	is	an	obvious	choice
for	 this,	we	have	 first	 to	 install	MongoDB.	MongoDB	 is	 a	Non-SQL	database
which	helps	to	store	lightweight	data	easily.

8.2.1.1	Ubuntu	install	of	MongoDB

On	Ubuntu,	you	can	install	MongoDB	as	follows.

8.2.1.2	macOS	install	of	MongoDB

On	macOS	you	can	use	the	command.

8.2.1.3	Windows	10	Installation	of	MongoDB

A	student	or	student	group	of	this	class	are	invited	to	discuss	on	Piazza	on	how

$	pip	install	pip	-U

$	pip	install	eve

$	sudo	apt-key	adv	--keyserver	hkp://keyserver.ubuntu.com:80	\

																			--recv	2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5

$	echo	"deb	[arch=amd64,arm64]	https://repo.mongodb.org/apt/ubuntu	\

				xenial/mongodb-org/3.6	multiverse"	|	\

				sudo	tee	/etc/apt/sources.list.d/mongodb-org-3.6.list

$	sudo	apt-get	update

$	sudo	apt-get	install	-y	mongodb-org

$	brew	update

$	brew	install	mongodb

to	 install	 mongoDB	 on	 Windows	 10	 and	 come	 up	 with	 an	 easy	 installation
solution.	Naturally,	we	have	the	same	2	different	ways	on	how	to	run	mongo.	In
user	 space	 or	 in	 the	 system.	 As	 we	 want	 to	 make	 sure	 your	 computer	 stays
secure.	The	 solution	must	have	 an	 easy	way	on	how	 to	 shut	 down	 the	Mongo
services.

An	enhancement	of	this	task	would	be	to	integrate	this	function	into	Cloudmesh
cmd5	with	 a	 command	mongo	 that	 allows	 for	 easier	 starting	 and	 stopping	 the
service	from	cms.

8.2.1.4	Database	Location

After	 downloading	Mongo,	 create	 the	 db	 directory.	 This	 is	 where	 the	Mongo
data	files	will	live.	You	can	create	the	directory	in	the	default	location	and	assure
it	has	 the	right	permissions.	Make	sure	 that	 the	 /data/db	directory	has	 the	right
permissions	by	running.

8.2.1.5	Verification

In	order	to	check	the	MongoDB	installation,	please	run	the	following	commands
in	one	terminal:

In	another	terminal,	we	try	to	connect	to	mongo	and	issue	a	mongo	command	to
show	the	databases:

If	 they	 execute	 without	 errors,	 you	 have	 successfully	 installed	MongoDB.	 To
stop	the	running	database	instance,	run	the	following	command.	simply	CTRL-C
the	running	mongod	process

8.2.1.6	Building	a	simple	REST	Service

In	this	section,	we	focus	on	creating	a	simple	rest	service.	To	organize	our	work
we	create	the	following	directory:

$	mkdir	-p	~/cloudmesh/data/db

$	mongod	--dbpath	~/cloudmesh/data/db

$	mongo	--host	127.0.0.1:27017

$	show	databases

As	Eve	needs	a	configuration	and	it	is	read	in	by	default	from	the	file	settings.py	we
place	the	following	content	in	the	file	~/cloudmesh/eve/settings.py:

The	DOMAIN	object	specifies	the	format	of	a	student	object	that	we	are	using	as
part	of	our	REST	service.	In	addition,	we	can	specify	RESOURCE_METHODS	which	methods
are	 activated	 for	 the	 REST	 service.	 This	 way,	 the	 developer	 can	 restrict	 the
available	 methods	 for	 a	 REST	 service.	 To	 pass	 along	 the	 specification	 for
MongoDB,	we	 simply	 specify	 the	 hostname,	 the	 port,	 as	well	 as	 the	 database
name.

Now	that	we	have	defined	the	settings	for	our	example	service,	we	need	to	start
it	with	a	simple	python	program.	We	could	name	that	program	anything	we	like,
but	often	it	is	called	simply	run.py.	This	file	is	placed	in	the	same	directory	where
you	 placed	 the	 settings.py.	 In	 our	 case,	 it	 is	 in	 the	 file	 ~/cloudmesh/eve/run.py	 and
contains	the	following	python	program:

This	is	the	most	minimal	application	for	Eve,	which	uses	the	settings.py	file	for
its	configuration.	Naturally,	if	we	were	to	change	the	configuration	file	and,	for
example	 change	 the	 DOMAIN	 and	 its	 schema,	 we	 would	 naturally	 have	 to

$	mkdir	-p	~/cloudmesh/eve

$	cd	~/cloudmesh/eve

MONGO_HOST	=	'localhost'

MONGO_PORT	=	27017

MONGO_DBNAME	=	'student_db'

DOMAIN	=	{

				'student':	{

								'schema':	{

												'firstname':	{

																'type':	'string'

												},

												'lastname':	{

																'type':	'string'

												},

												'university':	{

																'type':	'string'

												},

												'email':	{

																'type':	'string',

																	'unique':	True

												}

												'username':	{

																'type':	'string',

																	'unique':	True

												}

								}

				}

}

RESOURCE_METHODS	=	['GET',	'POST']

from	eve	import	Eve

app	=	Eve()

if	__name__	==	'__main__':

				app.run()

remove	 the	 database	 previously	 created	 and	 start	 the	 service	 new.	 This	 is
especially	 important	 as	 during	 the	 development	 phase,	 we	 may	 frequently
change	the	schema	and	the	database.	Thus	it	is	convenient	to	develop	necessary
cleaning	actions	as	part	of	a	Makefile,	which	we	leave	as	easy	exercise	for	 the
students.

Next,	we	need	 to	 start	 the	 services	which	can	easily	be	achieved	 in	a	 terminal
while	running	the	commands:

Previously	we	started	the	MongoDB	service	as	follows:

This	is	done	in	its	own	terminal	so	that	we	can	observe	the	log	messages	easily.
Next,	we	start	in	another	window	the	Eve	service	with

You	 can	 find	 the	 codes	 and	 commands	 up	 to	 this	 point	 in	 the	 following
document.

8.2.1.7	Interacting	with	the	REST	service

Yet,	in	another	window,	we	can	now	interact	with	the	REST	service.	We	can	use
the	command	line	to	save	the	data	in	the	database	using	the	REST	API.	The	data
can	be	 retrieved	 in	XML	or	 JSON	format.	 JSON	 is	often	more	convenient	 for
debugging	as	it	is	easier	to	read	than	XML.

Naturally,	we	need	first	to	put	some	data	into	the	server.	Let	us	assume	we	add
the	user	Albert	Zweistein.

To	achieve	this,	we	need	to	specify	the	header	using	H	tag,	saying	we	need	the
data	 to	be	 saved	using	 JSON	 format.	And	X	 tag	 says	 the	HTTP	protocol,	 and
here	we	use	POST	method.	And	the	tag	d	specifies	the	data	and	make	sure	you
use	JSON	format	to	enter	the	data.	Finally,	the	REST	API	endpoint	to	which	we
must	 save	 data.	 This	 allows	 us	 to	 save	 the	 data	 in	 a	 table	 called	 student	 in

$	mongod	--dbpath	~/cloudmesh/data/db/

$	cd	~/cloudmesh/eve

$	python	run.py

$	curl	-H	"Content-Type:	application/json"	-X	POST	\

							-d	'{"firstname":"Albert","lastname":"Zweistein",	\

							"school":"ISE","university":"Indiana	University",	\

							"email":"albert@iu.edu",	"username":	"albert"}'	\

							http://127.0.0.1:5000/student/

MongoDB	within	a	database	called	eve.

In	order	to	check	if	the	entry	was	accepted	in	mongo	and	included	in	the	server
issue	the	following	command	sequence	in	another	terminal:

Now	you	can	query	mongo	directly	with	its	shell	interface.

Naturally,	this	is	not	necessary	for	A	REST	service	such	as	eve	as	we	show	you
next	how	to	gain	access	to	the	data	via	mongo	while	using	REST	calls.	We	can
simply	retrieve	the	information	with	the	help	of	a	simple	URI:

Naturally,	 you	 can	 formulate	 other	URLs	 and	 query	 attributes	 that	 are	 passed
along	after	the	?.

This	will	now	allow	you	to	develop	sophisticated	REST	services.	We	encourage
you	 to	 inspect	 the	 documentation	 provided	 by	 Eve	 to	 showcase	 additional
features	that	you	could	be	used	as	part	of	your	efforts.

Let	us	explore	how	to	use	additional	REST	API	calls	properly.	We	assume	you
have	MongoDB	up	and	running.	To	query	the	service	itself,	we	can	use	the	URI
on	the	Eve	port

Your	payload	should	look	like	the	one	listed	next	if	your	output	is	not	formatted
like	this	try	adding	?pretty=1

$	mongo

>	show	databases

>	use	student_db

>	show	tables	#	query	the	table	names

>	db.student.find().pretty()		#	pretty	will	show	the	json	in	a	clear	way

$	curl	http://127.0.0.1:5000/student?firstname=Albert

$	curl	-i	http://127.0.0.1:5000

$	curl	-i	http://127.0.0.1:5000?pretty=1

HTTP/1.0	200	OK

Content-Type:	application/json

Content-Length:	150

Server:	Eve/0.7.6	Werkzeug/0.11.15	Python/2.7.16

Date:	Wed,	17	Jan	2018	18:34:07	GMT

{

				"_links":	{

								"child":	[

												{

																"href":	"student",

																"title":	"student"

												}

Remember	that	the	API	entry	points	include	additional	information	such	as	links
and	a	child,	and	href.

Set	 up	 a	 python	 environment	 that	 works	 for	 your	 platform.	 Provide	 explicit
reasons	why	 anaconda	 and	 other	 prepackaged	 python	 versions	 have	 issues	 for
cloud-related	activities.	When	may	you	use	anaconda	and	when	should	you	not
use	anaconda.	Why	would	you	want	to	use	pyenv?

What	is	the	meaning	and	purpose	of	links,	child,	and	href

In	this	case,	how	many	child	resources	are	available	through	our	API?

Develop	a	REST	service	with	Eve	and	start	and	stop	it

Define	curl	calls	to	store	data	into	the	service	and	retrieve	it.

Write	 a	 Makefile,	 and	 in	 it,	 a	 target	 clean	 that	 cleans	 the	 database.	 Develop
additional	 targets	 such	 as	 start	 and	 stop,	 that	 start	 and	 stop	 the	MongoDB	but
also	the	Eve	REST	service

Issue	the	command

What	does	the	_links	section	describe?

What	does	the	_items	section	describe?

]

				}

$	curl	-i	http://127.0.0.1:5000/people

				{

								"_items":	[],

								"_links":	{

												"self":	{

																"href":	"people",

																"title":	"people"

												},

												"parent":	{

																"href":	"/",

																"title":	"home"

												}

								},

								"_meta":	{

												"max_results":	25,

												"total":	0,

												"page":	1

								}

				}

8.2.1.8	Creating	REST	API	Endpoints

Next,	we	wont	 to	 enhance	 our	 example	 a	 bit.	 First,	 let	 us	 get	 back	 to	 the	 eve
working	directory	with

Add	the	following	content	to	a	file	called	run2.py

After	 creating	 and	 saving	 the	 file.	 Run	 the	 following	 command	 to	 start	 the
service

After	running	the	command,	you	can	interact	with	the	service	while	entering	the
following	url	in	the	web	browser:

You	can	also	open	up	a	second	terminal	and	type	in	it

The	following	information	will	be	returned:

This	example	illustrates	how	easy	it	is	to	create	REST	services	in	python	while

	$	cd	~/cloudmesh/eve

from	eve	import	Eve

from	flask	import	jsonify

import	os

import	getpass

	app	=	Eve	()

	@app.route('/student/albert')

def	alberts_information():

				data	=	{

								'firstname':	'Albert',

								'lastname':	'Zweistsein',

								'university':	'Indiana	University',

								'email':	'albert@example.com'

								}

				try:

								data['username']	=	getpass.getuser()

				except:

								data['username']	=	'not-found'

				return	jsonify(**data)

if	__name__	==	'__main__':

				app.run(debug=True,	host="127.0.0.1")

	$	python	run2.py

http://127.0.0.1:5000/student/alberts

$	curl	http://127.0.0.1:5000/student/alberts

{

		"firstname":	"Albert",

		"lastname":	"Zweistain",

		"university":	"Indiana	University",

		"email":	"albert@example.com",

		"username":	"albert"

}

combining	information	from	a	dict	with	information	retrieved	from	the	system.
The	 important	 part	 is	 to	 understand	 the	 decorator	 app.route.	 The	 parameter
specifies	the	route	of	the	API	endpoint,	which	is	be	the	address	appended	to	the
base	path,	http://127.0.0.1:5000.	We	must	return	a	jsonified	object,	which	can	easily	be
done	with	the	jsonify	function	provided	by	Flask.	As	you	can	see,	the	name	of	the
decorated	function	can	be	anything	you	look.	The	route	specifies	how	we	access
it	from	the	service.

8.2.1.9	REST	API	Output	Formats	and	Request	Processing

Another	way	 of	managing	 the	 data	 is	 to	 utilize	 class	 definitions	 and	 response
types	that	we	explicitly	define.

If	we	want	 to	create	an	object	 like	Student,	we	can	first	define	a	python	class.
Create	a	file	called	student.py.	Please,	note	the	get	method	that	returns	simply
the	 information	 in	 the	 dict	 for	 the	 class.	 It	 is	 not	 related	 to	 the	 REST	 get
function.

Next,	we	define	a	REST	service	with	Eve	as	shown	in	the	following	listing

class	Student(object):

				def	__init__(self,	firstname,	lastname,	university,	email):

								self.firstname	=	firstname

								self.lastname	=	lastname

								self.university	=	university

								self.email	=	email

								self.username	=	'undefined'

					def	get(self):

							return	self.__dict__

					def	setUsername(self,	name):

							self.username	=	name

							return	name

from	eve	import	Eve

from	student	import	Student

import	platform

import	psutil

import	json

from	flask	import	Response

import	getpass

	app	=	Eve()

		@app.route('/student/albert',	methods=['GET'])

def	processor():

				student	=	Student("Albert",

																						"Zweistein",

																						"Indiana	University",

																						"albert@example.edu")

				response	=	Response()

				response.headers["Content-Type"]	=	"application/json;	charset=utf-8"

				try:

								student.setUsername(getpass.getuser())

								response.headers["status"]	=	200

				except:

								response.headers["status"]	=	500

In	contrast	to	our	earlier	example,	we	are	not	using	the	jsonify	object	but	create	a
response	explicitly	that	we	return	to	the	clients.	The	response	includes	a	header
that	we	return	the	information	in	JSON	format,	a	status	of	200,	which	means	the
object	was	returned	successfully,	and	the	actual	data.

8.2.1.10	REST	API	Using	a	Client	Application

⷏�	This	example	is	not	tested.	Please	provide	feedback	and	improve.

In	the	Section	Rest	Services	with	Eve	we	created	our	own	REST	API	application
using	 Python	Eve.	Now	 once	 the	 service	 is	 running,	we	 need	 to	 learn	 how	 to
interact	with	it	through	clients.

First,	go	back	to	the	working	folder:

Here	we	create	a	new	python	file	called	client.py.	The	file	include	the	following
content.

				response.data	=	json.dumps(student.get())

				return	response

if	__name__	==	'__main__':

				app.run(debug=True,	host='127.0.0.1')

	$	cd	~/cloudmesh/eve

import	requests

import	json

def	get_all():

				response	=	requests.get("http://127.0.0.1:5000/student")

				print(json.dumps(response.json(),	indent=4,	sort_keys=True))

def	save_record():

				headers	=	{

								'Content-Type':	'application/json'

				}

				data	=	'{"firstname":"Gregor",

													"lastname":"von	Laszewski",

													"university":	"Indiana	University",

													"email":"jane@iu.edu",

													"username":	"jane"}'

				response	=	requests.post('http://localhost:5000/student/',

																														headers=headers,

																														data=data)

				print(response.json())

if	__name__	==	'__main__':

				save_record()

				get_all()

Run	the	following	command	in	a	new	terminal	to	execute	the	simple	client	by

Here	when	you	 run	 this	class	 for	 the	 first	 time,	 it	 runs	successfully,	but	 if	you
tried	it	for	the	second	time,	it	would	give	you	an	error.	Because	we	did	set	 the
email	to	be	a	unique	field	in	the	schema	when	we	designed	the	settings.py	file	in
the	beginning.	So	if	you	want	to	save	another	record,	you	must	have	entries	with
unique	emails.	To	make	this	dynamic,	you	can	include	an	input	reading	by	using
the	 terminal	 to	get	 the	student	data	 first,	and	 instead	of	 the	static	data	you	can
use	 the	 user	 input	 data	 from	 the	 terminal	 to	 get	 dynamic	 data.	 But	 for	 this
exercise,	we	do	not	expect	that	or	any	other	form	data	functionality.

To	 get	 the	 saved	 data,	 you	 can	 comment	 on	 the	 record	 saving	 function	 and
uncomment	the	get	all	function.	In	python,	commenting	is	done	by	using	#.

This	client	 is	using	 the	requests	python	 library	 to	 send	GET,	POST	and	other
HTTP	 requests	 to	 the	 server	 so	you	can	 leverage	build	 in	methods	 to	 simplify
your	work.

The	 get_all	 function	provides	a	way	 to	get	 the	output	 to	 the	console	with	all	 the
data	in	the	student	database.	The	save_record	function	provides	a	way	to	save	data	in
the	database.	You	can	create	dynamic	functions	in	order	 to	save	dynamic	data.
However,	it	may	take	some	time	for	you	to	apply	as	an	exercise.

Write	a	RESTful	service	to	determine	a	useful	piece	of	information	off	of	your
computer	i.e.	disk	space,	memory,	RAM,	etc.	In	this	exercise	what	you	need	to
do	is	use	a	python	library	to	extract	data	about	computer	information	mentioned
previously	and	sent	 this	 information	 to	 the	 the	user	once	 the	user	calls	an	API
endpoint	 like	 http://localhost:5000/performance/ram,	 it	 must	 return	 the	 RAM	 value	 of	 the
given	machine.	For	each	information	like	disk	space,	RAM,	etc.	you	can	use	an
endpoint	per	each	feature	needed.	As	a	tip	for	this	exercise,	use	the	psutil	 library
in	 python	 to	 retrieve	 the	 data,	 and	 then	 get	 this	 information	 into	 a	 string	 then
populate	a	class	called	Computer	and	try	to	save	the	object	likewise.

8.2.1.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	⷏�

⷏�

	$	python	client.py

	Part	of	this	section	related	to	the	management	of	the	MongoDB
service	is	done	by	the	cm4	command	we	will	be	developing	as	part	of
this	 class	 cms	mongo	admin	 that	 does	 all	 of	 the	 things	 explained	 next	 and
more.

Naturally,	it	is	of	advantage	to	have	in	cms	administration	commands	to	manage
mongo	and	eve	from	cmd	instead	of	targets	in	the	Makefile.	Hence,	we	propose
that	 the	 class	 develops	 such	 an	 extension.	 We	 create	 in	 the	 repository	 the
extension	 called	 admin	 and	hope	 that	 students	 through	 collaborative	work	 and
pull	requests	complete	such	an	admin	command.

The	proposed	command	is	located	at:

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py

It	will	be	up	to	the	class	to	implement	such	a	command.	Please	coordinate	with
each	other.

The	implementation	based	on	what	we	provided	in	the	Make	file	seems	straight
forward.	A	great	extension	 is	 to	 load	 the	definitions	of	 the	objects	or	eve	e.g.,
settings.py	not	from	the	class,	but	a	place	in	.cloudmesh.	I	propose	to	place	the
file	at:

the	location	of	 this	file	 is	used	when	the	Service	class	 is	 initialized	with	None.
Prior	 to	 starting	 the	 service,	 the	 file	 needs	 to	 be	 copied	 there.	 This	 could	 be
achieved	with	a	set	command.

8.2.2	HATEOAS	☁�

In	the	previous	section,	we	discussed	the	basic	concepts	of	RESTful	web	service.
Next,	we	introduce	you	to	the	concept	of	HATEOAS

HATEOAS	stands	for	Hypermedia	as	 the	Engine	of	Application	State,	and	 the
default	 configuration	 enables	 this	 within	 Eve.	 It	 is	 useful	 to	 review	 the
terminology	and	attributes	used	as	part	of	this	configuration.	HATEOS	explains
how	REST	API	endpoints	are	defined,	and	it	provides	a	clear	description	of	how

~/.cloudmesh/db/settings.py

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py

the	API	can	be	consumed	through	these	terms:

_links

Links	describe	the	relation	of	the	current	resource	being	accessed	to	the	rest
of	the	resources.	It	 is	like	if	we	have	a	set	of	links	to	the	set	of	objects	or
service	endpoints	that	we	are	referring	in	the	RESTful	web	service.	Here	an
endpoint	refers	to	a	service	call	that	is	responsible	for	executing	one	of	the
CRUD	operations	on	a	particular	object	or	set	of	objects.	More	on	the	links,
the	 links	 object	 contains	 the	 list	 of	 serviceable	API	 endpoints	 or	 a	 list	 of
services.	When	we	are	calling	a	GET	request	or	any	other	request,	we	can
use	 these	 service	 endpoints	 to	 execute	different	queries	based	on	 the	user
purpose.	For	 instance,	 a	 service	call	 can	be	used	 to	 insert	data	or	 retrieve
data	from	a	remote	database	using	a	REST	API	call.	About	databases,	we
discuss	in	detail	in	another	chapter.

title

The	 title	 in	 the	 rest	 endpoint	 is	 the	 name	 or	 topic	 that	 we	 are	 trying	 to
address.	It	describes	the	nature	of	the	object	by	a	single	word.	For	instance
student,	bank-statement,	salary,	etc.	can	be	a	title.

parent

The	 term	 parent	 refers	 to	 the	 very	 initial	 link	 or	 an	 API	 endpoint	 in	 a
particular	RESTful	web	service.	Generally,	this	is	denoted	with	the	primary
address,	like	http://example.com/api/v1/.

href

The	 term	href	 refers	 to	 the	url	 segment	 that	we	use	 to	 access	 a	particular
REST	 API	 endpoint.	 For	 instance	 “student?page=1”	 will	 return	 the	 first
page	of	student	list	by	retrieving	a	particular	number	of	items	from	a	remote
database	 or	 a	 remote	 data	 source.	 The	 full	 URL	 looks	 like	 this,
“http://www.exampleapi.com/student?page=1”.

In	 addition	 to	 these	 fields,	 eve	 automatically	 create	 the	 following	 information
when	resources	are	created	as	showcased	of

http://python-eve.org/features.html

Field Description
_created item	creation	date.
_updated item	last	updated	on.
_etag ETag,	to	be	used	for	concurrency	control	and	conditional	requests.
_id unique	item	key,	also	needed	to	access	the	individual	item	endpoint.

Pagination	information	can	be	included	in	the	_meta	field.

8.2.2.1	Filtering

Clients	can	submit	query	strings	to	the	rest	service	to	retrieve	resources	based	on
a	filter.	This	also	allows	the	sorting	of	the	results	queried.	One	nice	feature	about
using	 mongo	 as	 a	 backend	 database	 is	 that	 Eve	 allows	 not	 only	 python
conditional	expressions,	but	also	mongo	queries.

A	number	of	examples	to	conduct	such	queries	include:

A	python	expression

8.2.2.2	Pretty	Printing

Pretty	printing	is	typically	supported	by	adding	the	parameter	?pretty	or	?pretty=1

If	this	does	not	work,	you	can	always	use	python	to	beautify	a	JSON	output	with

or

8.2.2.3	XML

$	curl	-i	-g	http://eve-demo.herokuapp.com/people?where={%22lastname%22:%20%22Doe%22}

$	curl	-i	http://eve-demo.herokuapp.com/people?where=lastname=="Doe"

$	curl	-i	http://localhost/people?pretty

$	curl	-i	http://localhost/people	|	python	-m	json.tool

http://python-eve.org/features.html

If	for	some	reason	you	like	to	retrieve	the	information	in	XML	you	can	specify
this	for	example	through	curl	with	an	Accept	header

8.2.3	EXTENSIONS	TO	EVE	☁�

Several	extensions	have	been	developed	by	 the	community.	This	 includes	eve-
swagger,	 eve-sqlalchemy,	 eve-elastic,	 eve-mongoengine,	 eve-neo4j,	 eve.net,
eve-auth-jwt,	and	flask-sentinel.

Naturally,	there	are	many	more.

Students	 have	 the	 opportunity	 to	 pick	 one	 of	 the	 community	 extensions	 and
provide	a	section	for	the	handbook.

Pick	 one	 of	 the	 extension,	 research	 it	 and	 provide	 a	 small	 section	 for	 the
handbook,	so	we	add	it.

8.2.3.1	Object	Management	with	Eve	and	Evegenie

http://python-eve.org/

Eve	 makes	 the	 creation	 of	 a	 REST	 implementation	 in	 python	 easy.	 We	 will
provide	you	with	an	implementation	example	that	showcases	that	we	can	create
REST	services	without	writing	a	single	line	of	code.	The	code	for	this	is	located
at	https://github.com/cloudmesh/rest

This	code	will	have	a	master	branch	but	will	also	have	a	dev	branch	in	which	we
will	add	gradually	more	objects.	Objects	in	the	dev	branch	will	include:

virtual	directories
virtual	clusters
job	sequences
inventories

You	 may	 want	 to	 check	 our	 ongoing	 development	 work	 in	 the	 dev	 branch.
However,	for	the	purpose	of	this	class,	the	master	branch	is	sufficient.

$	curl	-H	"Accept:	application/xml"	-i	http://localhost

http://python-eve.org/
https://github.com/cloudmesh/rest

8.2.3.1.1	Installation

First,	 we	 have	 to	 install	 MongoDB.	 The	 installation	 will	 depend	 on	 your
operating	system.	For	the	use	of	the	REST	service,	it	is	not	essential	to	integrate
MongoDB	 into	 the	 system	 upon	 reboot,	 which	 is	 the	 focus	 of	 many	 online
documents.	 However,	 for	 us,	 it	 is	 better	 if	 we	 can	 start	 and	 stop	 the	 services
explicitly	for	now.

On	ubuntu,	you	need	to	do	the	following	steps:

⷏�	TODO:	Section	can	be	contributed	by	a	student.

On	Windows	10,	you	need	to	do	the	following	steps:

⷏�	TODO:	Section	 can	be	 contributed	by	 a	 student.	 If	 you	 elect	Windows	10.
You	 could	 be	 using	 the	 online	 documentation	 provided	 by	 starting	 it	 on
Windows,	or	running	it	in	a	docker	container.

On	macOS	you	can	use	home-brew	and	install	it	with:

In	future,	we	may	want	to	add	SSL	authentication	in	which	case	you	may	need	to
install	it	as	follows:

8.2.3.1.2	Starting	the	service

We	have	provided	a	convenient	Makefile	that	currently	only	works	for	macOS.
It	is	easy	for	you	to	adapt	it	to	Linux.	Certainly,	you	can	look	at	the	targets	in	the
makefile	and	replicate	them	one	by	one.	Important	targets	are	deployed	and	test.

When	using	the	makefile,	you	can	start	the	services	with:

It	starts	 two	terminals.	In	one	you	see	the	mongo	service,	 in	the	other,	you	see
the	eve	service.	The	eve	service	takes	a	file	called	sample.settings.py	that	is	base
on	sample.json	for	the	start	of	the	eve	service.	The	mongo	service	is	configured

$	brew	update

$	brew	install	mongodb

$	brew	install	mongodb	--with-openssl

$	make	deploy

in	 such	 a	 way	 that	 it	 only	 accepts	 incoming	 connections	 from	 the	 localhost,
which	 is	sufficient	 for	our	case.	The	mongo	data	 is	written	 into	 the	 $USER/.cloudmesh
directory,	so	make	sure	it	exists.

To	test	the	services,	you	can	say:

You	will	see	several	JSON	messages	be	written	to	the	screen.

8.2.3.1.3	Creating	your	own	objects

The	example	demonstrated	how	easy	it	is	to	create	a	MongoDB	and	an	eve	rest
service.	 Now	 let	 us	 use	 this	 example	 to	 create	 your	 own.	 For	 this,	 we	 have
modified	a	tool	called	evegenie	to	install	it	onto	your	system.

The	original	documentation	for	evegenie	is	located	at:

http://evegenie.readthedocs.io/en/latest/

However,	 we	 have	 improved	 evegenie	 while	 providing	 a	 command	 line	 tool
based	on	it.	The	improved	code	is	located	at:

https://github.com/cloudmesh/evegenie

You	clone	it	and	install	on	your	system	as	follows:

This	should	install	in	your	system	evegenie.	YOu	can	verify	this	by	typing:

If	 you	 see	 the	 path	 evegenie	 is	 installed.	With	 evegenie	 installed	 its	 usage	 is
simple:

$	make	test

$	cd	~/github

$	git	clone	https://github.com/cloudmesh/evegenie

$	cd	evegenie

$	python	setup.py	install

$	pip	install	.

$	which	evegenie

$	evegenie

Usage:

		evegenie	--help

		evegenie	FILENAME

http://evegenie.readthedocs.io/en/latest/
https://github.com/cloudmesh/evegenie

It	takes	a	JSON	file	as	input	and	writes	out	a	settings	file	for	the	use	in	eve.	Let
us	 assume	 the	 file	 is	 called	 sample.json	 than	 the	 settings	 file	 is	 called
sample.settings.py.	 Having	 the	 evegenie	 program	 allows	 us	 to	 generate	 the
settings	 files	 easily.	 You	 can	 include	 them	 in	 your	 project	 and	 leverage	 the
Makefile	 targets	 to	start	 the	services	 in	your	project.	 In	case	you	generate	new
objects,	make	sure	you	rerun	evegenie,	kill	all	previous	windows	in	which	you
run	 eve	 and	 mongo	 and	 restart.	 In	 case	 of	 changes	 to	 objects	 that	 you	 have
designed	and	run	previously,	you	also	need	to	delete	the	MongoDB	database.

8.3	AUTOMATED	REST	SERVICE	GENERATION
WITH	CODEGEN	FOR	OPENAPI	2.0

8.3.1	OPENAPI	2.0	SPECIFICATION	☁�

Swagger	 provides	 through	 its	 specification	 the	 definition	 of	 REST	 services
through	a	YAML	or	JSON	document.

When	following	the	API-specification-first	approach	to	defining	and	developing
a	RESTful	service,	the	first	and	foremost	step	is	to	define	the	API	conforming	to
the	 OpenAPI	 specification,	 and	 then	 using	 codegen	 tools	 to	 conveniently
generate	server-side	stub	code,	client	code,	documentation,	in	the	language	you
desire.	In	Section	REST	Service	Generation	with	OpenAPI	we	have	introduced
the	codegen	tool	and	how	to	use	that	to	generate	server-side	and	client-side	code
and	documentation.	In	this	Section	The	Virtual	Cluster	example	API	Definition
we	will	 use	 a	 slightly	more	 complex	 example	 to	 show	 how	 to	 define	 an	API
following	the	OpenAPI	2.0	specification.	The	example	is	 to	retrieve	the	virtual
cluster	(VC)	object	from	the	server.

The	 OpenAPI	 specification	 is	 formerly	 known	 as	 Swagger	 RESTful	 API
Documentation	Specification.	It	defines	a	specification	to	describe	and	document
a	RESTful	service	API.	It	is	also	known	under	version	3.0	of	swagger.	However,
as	 the	 tools	 for	3.0	are	not	yet	completed,	we	continue	 for	now	 to	use	version
swagger	 2.0,	 until	 the	 transition	 has	 been	 completed.	 This	 is	 especially	 of
importance,	 as	 we	 need	 to	 use	 the	 swagger	 codegen	 tool,	 which	 currently
supports	 only	 up	 to	 specification	 v2.	 Hence	 we	 are	 at	 this	 time	 using
OpenAPI/Swagger	 v2.0	 in	 our	 example.	 There	 are	 some	 structure	 and	 syntax

changes	in	v3,	while	the	essence	is	very	similar.	For	more	details	of	the	changes
between	 v3	 and	 v2,	 please	 refer	 to	 A	 document	 published	 on	 the	Web	 titled
Difference	between	OpenAPI	3.0	and	Swagger	2.0.

You	can	write	the	API	definition	in	JSON	for	YAML	format.	Let	us	discuss	this
format	briefly	and	focus	on	YAML	as	it	is	easier	to	read	and	maintain.

On	the	root	level	of	the	YAML	document,	we	see	fields	like	swagger,	info,	and
others.	 Among	 these	 fields,	 swagger,	 info,	 and	 path	 are	 required.	 Their
meaning	is	as	follows:

swagger

specifies	the	version	number.	In	our	case	a	string	value	‘2.0’	is	used	as	we
are	writing	the	definition	conforming	to	the	v2.0	specification.

info

defines	metadata	information	related	to	the	API.	E.g.,	the	API	version,	title
and	 description,	 termsOfService	 if	 applicable,	 contact	 information	 and
license,	 etc.	 Among	 these	 attributes,	 version	 and	 title	 are	 required	 while
others	are	optional.

path

defines	 the	 actual	 endpoints	 of	 the	 exposed	 RESTful	 API	 service.	 Each
endpoint	has	a	field	pattern	as	the	key	and	a	Path	Item	Object	as	the	value.
In	 this	 example	 we	 have	 defined	 /vc	 and	 /vc/{id}	 as	 the	 two	 service
endpoints.	They	will	 be	part	of	 the	 final	 service	URL,	appended	after	 the
service	host	and	basePath,	which	is	explained	later.

Let	 us	 focus	 on	 the	Path	 Item	Object.	 It	 contains	 one	 or	more	 supported
operations	on	the	service	endpoint.	An	operation	is	keyed	by	a	valid	HTTP
operation	verb,	e.g.,	one	of	get,	put,	post,	delete,	or	patch.	It	has	a	value	of
Operation	Object	that	describes	the	operations	in	more	detail.

The	Operation	Object	will	always	require	a	Response	Object.	A	Response
Object	 has	 a	HTTP	status	code	 as	 the	 key,	 e.g.,	200	 as	 successful	 return;
40X	 as	 authentication	 and	 authorization	 related	 errors;	 and	 50x	 as	 other

https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/

server-side	servers.	It	can	also	have	a	default	response	keyed	by	default	for
undeclared	 HTTP	 status	 return	 code.	 The	 Response	 Object	 value	 has	 a
required	description	field,	and	if	anything	is	returned,	a	schema	indicating
the	object	type	to	be	returned,	which	could	be	a	primitive	type,	e.g.,	string,
or	an	array	or	customized	object.	 In	case	of	object	 or	 an	array	 of	object,
use	$ref	to	point	to	the	definition	of	the	object.	In	this	example,	we	have

$ref:	“#/definitions/VC”

to	 point	 to	 the	 VC	 definition	 in	 the	 definitions	 section	 in	 the	 same
specification	file,	which	will	be	explained	later.

Besides	 the	 required	 field,	 the	Operation	Object	 can	 have	 summary	 and
description	 to	 indicate	 what	 the	 operation	 is	 about;	 and	 operationId	 to
uniquely	 identify	 the	 operation;	 and	 consumes	 and	 produces	 to	 indicate
what	MIME	types	it	expects	as	input	and	for	returns,	e.g.,	application/json
in	most	modern	RESTful	APIs.	It	can	further	specify	what	input	parameter
is	 expected	using	parameters,	which	 requires	 a	name	 and	 in	 fields.	 name
specifies	the	name	of	the	parameter,	and	in	specifies	from	where	to	get	the
parameter	 and	 its	 possible	 values	 are	 query,	 header,	 path,	 formData	 or
body.	In	this	example	in	the	/vc/{id}	path	we	obtain	the	id	parameter	 from
the	URL	path	which	has	the	path	value.	When	the	in	has	path	as	its	value,
the	required	field	is	required	and	has	to	be	set	as	true;	when	the	in	has	value
other	than	body,	a	type	field	is	required	to	specify	the	type	of	the	parameter.

While	the	three	root-level	fields	mentioned	previously	are	required,	in	most
cases,	we	also	use	other	optional	fields.

host

to	indicate	where	the	service	is	to	be	deployed,	which	could	be	localhost	or
a	 valid	 IP	 address	 or	 a	DNS	name	of	 the	 host	where	 the	 service	 is	 to	 be
deployed.	If	another	port	number	other	than	80	is	to	be	used,	write	the	port
number	as	well,	e.g.,	localhost:8080.

schemas

to	specify	the	transfer	protocol,	e.g.,	HTTP	or	https.

basePath

to	specify	the	common	base	URL	to	be	appended	after	the	host	to	form	the
base	path	for	all	the	endpoints,	e.g.,	/api	or	/api/1.0/.	 In	 this	example	with
the	 values	 specified	 we	 would	 have	 the	 final	 service	 endpoints
http://localhost:8080/api/vcs	 and	 http://localhost:8080/api/vc/{id}	 by
combining	the	schemas,	host,	basePath	and	paths	values.

consumes	and	produces

can	also	be	specified	on	the	top	level	to	specify	the	default	MIME	types	of
the	input	and	return	if	most	paths	and	the	defined	operations	have	the	same.

definitions

as	 used	 in	 in	 the	 paths	 field,	 in	 order	 to	 point	 to	 a	 customized	 object
definition	with	a	$ref	keyword.

The	definitions	field	contains	the	object	definition	of	the	customized	objects
involved	 in	 the	API,	 similar	 to	 a	 class	 definition	 in	 any	Object	 Oriented
programming	 language.	 In	 this	 example,	 we	 defined	 a	 VC	 object,	 and
hierarchically	 a	 Node	 object.	 Each	 object	 defined	 is	 a	 type	 of	 Schema
Object	in	which	many	field	could	be	used	to	specify	the	object	(see	details
in	 the	REF	link	at	 the	 top	of	 the	document),	but	 the	most	 frequently	used
ones	are:

type

to	specify	the	type	and	in	the	customized	definition	case	the	value	is	mostly
object.

required

field	to	list	the	names	of	the	required	attributes	of	the	object.

properties

has	 the	 detailed	 information	 of	 each	 attribute/property	 of	 the	 object,	 e.g.,
type,	format.	It	also	supports	hierarchical	object	definition	so	a	property	of

one	 object	 could	 be	 another	 customized	 object	 defined	 elsewhere	 while
using	schema	and	$ref	keyword	 to	point	 to	 the	definition.	 In	 this	example
we	have	defined	a	VC,	 or	virtual	 cluster,	object,	while	 it	 contains	another
object	definition	of

Node

as	part	of	a	cluster.

8.3.1.1	The	Virtual	Cluster	example	API	Definition

8.3.1.1.1	Terminology

VC

A	 virtual	 cluster,	 which	 has	 one	 Front-End	 (FE)	 management	 node	 and
multiple	compute	nodes.	A	VC	object	also	has	id	and	name	 to	identify	the
VC,	and	nnodes	to	indicate	how	many	compute	nodes	it	has.

FE

A	management	node	from	which	to	access	the	compute	nodes.	The	FE	node
usually	connects	to	all	the	compute	nodes	via	a	private	network.

Node

A	computer	node	object	that	the	info	ncores	to	indicate	the	number	of	cores
it	 has,	 and	 ram	 and	 localdisk	 to	 show	 the	 size	 of	 RAM	 and	 local	 disk
storage.

8.3.1.1.2	Specification

swagger:	"2.0"

info:

		version:	"1.0.0"

		title:	"A	Virtual	Cluster"

		description:	"Virtual	Cluster	as	a	test	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"IU	ISE	software	and	system	team"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/vcs:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"A	list	of	VCs."

										schema:

												type:	"array"

												items:

														$ref:	"#/definitions/VC"

		/vcs/{id}:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						operationId:	getVCById

						parameters:

								-	name:	id

										in:	path

										description:	ID	of	VC	to	fetch

										required:	true

										type:	string

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"The	vc	with	the	given	id."

										schema:

												$ref:	"#/definitions/VC"

								default:

										description:	unexpected	error

										schema:

												$ref:	'#/definitions/Error'

definitions:

		VC:

				type:	"object"

				required:

						-	"id"

						-	"name"

						-	"nnodes"

						-	"FE"

						-	"computes"

				properties:

						id:

								type:	"string"

						name:

								type:	"string"

						nnodes:

								type:	"integer"

								format:	"int64"

						FE:

								type:	"object"

								schema:

										$ref:	"#/definitions/Node"

						computes:

								type:	"array"

								items:

										$ref:	"#/definitions/Node"

						tag:

								type:	"string"

		Node:

				type:	"object"

				required:

						-	"ncores"

						-	"ram"

						-	"localdisk"

				properties:

						ncores:

								type:	"integer"

								format:	"int64"

						ram:

								type:	"integer"

								format:	"int64"

						localdisk:

								type:	"integer"

								format:	"int64"

8.3.1.2	References

The	official	OpenAPI	2.0	Documentation

8.3.2	OPENAPI	REST	SERVICE	VIA	INTROSPECTION	☁�

The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	 read	 in	 the	 specification	 from	 its	YAML	 file.	 It	 is	 then	 introspected,	 and
dynamically	 methods	 are	 created	 that	 are	 used	 for	 the	 implementation	 of	 the
server.

The	full	example	for	this	is	available	in

https://github.com/cloudmesh-community/nist/tree/master/examples/flask-
connexion-swagger

An	extensive	documentation	is	avalable	at

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 returns	 the	 cpu	 information	 of	 a	 computer	 to	 dynamically
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

		Error:

				required:

				-	code

				-	message

				properties:

						code:

								type:	integer

								format:	int32

						message:

								type:	string

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/cloudmesh-community/nist/tree/master/examples/flask-connexion-swagger
https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py
files	as	our	yaml	file	calls	out	methods	from	cpu.py

The	YAML	file	looks	as	follows.

Here	 we	 implement	 a	 get	 method	 and	 associate	 is	 with	 the	 URL	 /cpu.	 The
operationid,	 defines	 the	 method	 that	 we	 call	 which,	 as	 we	 used	 the	 local
directory,	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the
operation	id.

A	 straightforward	 function	 to	 return	 the	 CPU	 information	 is	 defined	 in	 cpu.py
which	we	list	next

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"cpuinfo"

		description:	"A	simple	service	to	get	cpuinfo	as	an	example	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	Example"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/cloudmesh"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/cpu:

				get:

						tags:

								-	CPU

						operationId:	cpu.get_processor_name

						description:	"Returns	cpu	information	of	the	hosting	server"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"CPU	info"

										schema:

												$ref:	"#/definitions/CPU"

definitions:

		CPU:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

						type:	"string"

We	have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	server	in	two	different	terminals

When	we	call

our	demo	is	run.

8.3.2.1	Verification

It	is	important	to	be	able	to	verify	if	a	YAML	file	is	correct.	To	identify	this,	the
easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	version	available
at:

https://editor.swagger.io/

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

			osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

			pip	install	-r	requirements.txt

demo:

			$(call	terminal,	python	server.py)

			sleep	3

			@echo	"==="

			@echo	"Get	the	info"

			@echo	"==="

			curl	http://localhost:8080/cloudmesh/cpu

			@echo

			@echo	"==="

make	demo

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example,	and	paste	your	YAML
file	in	it.	Debug	messages	are	helping	you	to	correct	things.

A	terminal-based	command	may	also	be	helpful	but	is	a	bit	difficult	to	read.

8.3.2.2	Mock	service

In	some	cases,	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case,	it	is	useful	to	run	a	mock
service.	YOu	can	invoke	such	a	service	with

8.3.2.3	Exercise

OpenAPI.Conexion.1:

Modify	 the	makefile,	 so	 it	also	works	on	ubuntu,	but	do	not	disable
the	ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on
the	 OS.	 You	 can	 look	 at	 the	 makefiles	 that	 create	 this	 book	 as	 an
example.	Find	alternatives	to	starting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile,	 so	 it	 also	 works	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	PowerShell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	GitBash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	compute	service	 interfacing	with	AWS,	azure,	google	or

$	connexion	run	cpu.yaml	--stub	--debug

$	connexion	run	cpu.yaml	--mock=all	-v

OpenStack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
GitHub,	iCloud,	FTP,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	 and	 then	 implement	 it	 for	 different	 providers.	 The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so
that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	Tornado	so	the	service	could	run	in	production.

8.3.3	OPENAPI	REST	SERVICE	VIA	CODEGEN	☁�

	REST	36:02	Swagger

In	 this	 section,	 we	 are	 discussing	 how	 to	 use	 OpenAPI	 2.0	 and	 Swagger
Codegen	to	define	and	develop	a	REST	Service.

We	assume	you	have	been	familiar	with	the	concept	of	REST	service,	OpenAPI,
as	discussed	in	section	Overview	of	Rest.

In	the	next	section,	we	further	look	into	the	Swagger/OpenAPI	2.0	specification
Swagger	Specification	and	use	a	slightly	more	complex	example	of	walking	you
through	 the	 design	 of	 a	 RESTful	 service	 following	 the	 OpenAPI	 2.0
specifications.

We	 use	 a	 simple	 example	 to	 demonstrate	 the	 process	 of	 developing	 a	 REST

https://youtu.be/0_Ub13py_K8

service	with	Swagger/OpenAPI	2.0	specification	and	the	tools	related	to	is.	The
general	steps	are:

Step	 1	 (Section	 Step	 1:	 Define	 Your	 REST	 Service.	 Define	 the	 REST
service	 conforming	 to	Swagger/OpenAPI	 2.0	 specification.	 It	 is	 a	YAML
document	 file	 with	 the	 basics	 of	 the	 REST	 service	 defined,	 e.g.,	 what
resources	it	has	and	what	actions	are	supported.

Step	 2	 (Section	 Step	 2:	 Server	 Side	 Stub	 Code	 Generation	 and
Implementation.	 Use	 Swagger	 Codegen	 to	 generate	 the	 server-side	 stub
code.	Fill	in	the	actual	implementation	of	the	business	logic	portion	in	the
code.

Step	3	(Section	Step	3:	Install	and	Run	the	REST	Service.	Install	the	server-
side	code	and	run	it.	The	service	is	then	available.

Step	 4	 (Section	 Step	 4:	 Generate	 Client	 Side	 Code	 and	Verify.	Generate
client-side	code.	Develop	code	to	call	the	REST	service.	Install	and	run	to
verify.

8.3.3.1	Step	1:	Define	Your	REST	Service

In	 this	 example	 we	 define	 a	 simple	 REST	 service	 that	 returns	 the	 hosting
server’s	basic	CPU	info.	The	example	specification	in	yaml	is	as	follows:
swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"cpuinfo"

		description:	"A	simple	service	to	get	cpuinfo	as	an	example	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	Example"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/cpu:

				get:

						description:	"Returns	cpu	information	of	the	hosting	server"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"CPU	info"

										schema:

8.3.3.2	Step	2:	Server	Side	Stub	Code	Generation	and	Implementation

With	 the	REST	 service	having	been	defined,	we	can	now	generate	 the	 server-
side	stub	code	easily.

8.3.3.2.1	Setup	the	Codegen	Environment

You	need	to	install	the	Swagger	Codegen	tool	if	not	yet	done	so.	For	macOS	we
recommend	that	you	use	the	homebrew	install	via

On	Ubuntu	you	can	install	swagger	as	follows	(update	the	version	as	needed):

Add	the	alias	to	your	.bashrc	or	.bash_profile	 file.	After	you	start	a	new	terminal	you
can	use	in	that	terminal	now	the	command

For	other	platforms,	you	can	just	use	the	.jar	file,	which	can	be	downloaded	from
this	link.

Also,	 make	 sure	 Java	 is	 installed	 in	 your	 system.	 To	 have	 a	 well-defined
location,	we	recommend	that	you	place	the	code	in	the	directory	~/cloudmesh.	In	this
directory,	you	also	place	the	file	cpu.yaml.

8.3.3.2.2	Generate	Server	Stub	Code

After	 you	have	 the	 codegen	 tool	 ready,	 and	with	 Java	7	or	 8	 installed	 in	your
system,	you	can	run	the	following	to	generate	the	server-side	stub	code:

												$ref:	"#/definitions/CPU"

definitions:

		CPU:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

								type:	"string"

$	brew	install	swagger-codegen

$	mkdir	~/swagger

$	cd	~/swagger

$	wget	https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar

$	alias	swagger-codegen="java	-jar	~/swagger/swagger-codegen-cli-2.3.1.jar"

swagger-codegen

https://swagger.io/docs/swagger-tools/
https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar

or	if	you	have	not	created	an	alias

In	the	specified	directory	under	 flaskConnexion,	you	find	 the	generated	python
flask	code	with	python	2	compatibility.	It	is	best	to	place	the	swagger	code	under
the	directory	~/cloudmesh	to	have	a	location	where	you	can	easily	find	it.	If	you	want
to	use	Python	3	make	sure	to	choose	the	appropriate	option.	To	switch	between
python	 2	 and	 Python	 3	 we	 recommend	 that	 you	 use	 a	 python	 virtual
environment.

8.3.3.2.3	Fill	in	the	actual	implementation

Under	the	flaskConnexion	directory,	you	find	a	swagger_server	directory,	under
which	 you	 find	 directories	 with	 models	 defined	 and	 controllers	 code	 stub
resides.	The	models’	 code	 are	 generated	 from	 the	 definition	 in	Step	1.	On	 the
controller	code,	 though,	we	need	to	fill	 in	 the	actual	 implementation.	You	may
see	a	default_controller.py	file	under	the	controllers	directory	in	which	the	resource	and
action	 is	 defined	 but	 yet	 to	 be	 implemented.	 In	 our	 example,	 you	 find	 such	 a
function	definition	which	we	list	next:

Please	note	 the	 do	some	magic!	 string	 at	 the	 return	 of	 the	 function.	This	 ought	 to	 be
replaced	with	actual	implementation	of	what	you	would	like	your	REST	call	to
be	 really	 doing.	 In	 reality,	 this	 could	 be	 some	 call	 to	 a	 backend	 database	 or
datastore,	 a	 call	 to	 another	 API;	 or	 even	 calling	 another	 REST	 service	 from
another	location.	In	this	example,	we	simply	retrieve	the	CPU	model	information
from	the	hosting	server	through	a	simple	python	call	to	illustrate	this	principle.
Thus	you	can	define	the	following	code:

$	swagger-codegen	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

$	java	-jar	swagger-codegen-cli.jar	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	cpu	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	'do	some	magic!'

And	then	change	the	cpu_get()	function	to	the	following:

Please	 note	 we	 are	 returning	 a	 CPU	 object	 as	 defined	 in	 the	 API	 and	 later
generated	by	the	codegen	tool	in	the	models	directory.

It	is	best	not	to	include	the	definition	of	get_processor_name()	in	the	same	file	as	you	see
the	definition	of	cpu_get().	The	reason	for	this	is	that	in	case	you	need	to	regenerate
the	 code,	 your	modified	 code	will	 naturally	be	overwritten.	Thus,	 to	minimize
the	changes,	we	do	recommend	to	maintain	that	portion	in	a	different	filename
and	import	the	function	to	keep	the	modifications	small.

At	this	step,	we	have	completed	the	server-side	code	development.

8.3.3.3	Step	3:	Install	and	Run	the	REST	Service:

Now	we	can	install	and	run	the	REST	service.	It	is	strongly	recommended	that
you	run	this	in	a	pyenv	or	a	virtualenv	environment.

8.3.3.3.1	Start	a	virtualenv:

In	case	you	are	not	using	pyenv,	please	use	virtual	env	as	follows:

8.3.3.3.2	Make	sure	you	have	the	latest	pip:

import	os,	platform,	subprocess,	re

def	get_processor_name():

				if	platform.system()	==	"Windows":

								return	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								return	subprocess.check_output(command,	shell=True).strip()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																return	re.sub(".*model	name.*:",	"",	line,	1)

				return	"cannot	find	cpuinfo"

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	CPU	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	CPU(get_processor_name())

$	virtualenv	RESTServer

$	source	RESTServer/bin/activate

8.3.3.3.3	Install	the	requirements	of	the	server	side	code:

8.3.3.3.4	Install	the	server-side	code	package:

Under	the	same	directory,	run:

8.3.3.3.5	Run	the	service

Under	the	same	directory:

You	should	see	a	message	like	this:

8.3.3.3.6	Verify	the	service	using	a	web	browser:

Open	a	web	browser	and	visit:

http://localhost:8080/api/cpu

to	see	if	it	returns	a	JSON	object	with	CPU	model	info	in	it.

Assignment:	How	would	you	verify	that	your	service	works	with	a	curl	call?

8.3.3.4	Step	4:	Generate	Client-Side	Code	and	Verify

In	addition	to	the	server-side	code,	swagger	can	also	create	a	client	side	code.

8.3.3.4.1	Client-side	code	generation:

Generate	 the	client-side	code	 in	a	similar	 fashion	as	we	did	 for	 the	server-side
code:

$	pip	install	-U	pip

$	cd	~/cloudmesh/swagger_example/server/cpu/flaskConnexion

$	pip	install	-r	requirements.txt

$	python	setup.py	install

$	python	-m	swagger_server

*	Running	on	http://0.0.0.0:8080/	(Press	CTRL+C	to	quit)

$	java	-jar	swagger-codegen-cli.jar	generate	\

8.3.3.4.2	Install	the	client-side	code	package:

Although	 we	 could	 have	 installed	 the	 client	 in	 the	 same	 python	 pyenv	 or
virtualenv,	we	 showcase	 here	 that	 it	 can	 be	 installed	 in	 a	 completely	 different
environment.	That	would	make	 it	even	possible	 to	use	a	Python	3	based	client
and	 a	 Python	 2	 based	 server,	 showcasing	 interoperability	 between	 python
versions	(although	we	just	use	python	2	here).	Thus	we	create	ane	new	python
virtual	environment	and	conduct	our	install.

8.3.3.4.3	Using	the	client	API	to	interact	with	the	REST	service

Under	 the	directory	swagger_example/client/cpu	you	will	 find	a	README.md
file	which	serves	as	API	documentation	with	the	example	client	code	in	it.	E.g.,
if	we	save	the	following	code	into	a	.py	file:

We	 can	 then	 run	 this	 code	 to	 verify	 the	 calling	 to	 the	 REST	 service	 actually
works.	We	are	expecting	to	see	a	return	similar	to	this:

Obviously,	we	could	have	applied	additional	cleanup	of	the	information	returned
by	the	python	code,	such	as	removing	duplicated	spaces.

8.3.3.5	Towards	a	Distributed	Client	Server

				-i	~/cloudmesh/cpu.yaml	\

				-l	python	\

				-o	~/cloudmesh/swagger_example/client/cpu	\

				-D	supportPython2=true

$	virtualenv	RESTClient

$	source	RESTClient/bin/activate

$	pip	install	-U	pip

$	cd	swagger_example/client/cpu

$	pip	install	-r	requirements.txt

$	python	setup.py	install

from	__future__	import	print_function

import	time

import	swagger_client

from	swagger_client.rest	import	ApiException

from	pprint	import	pprint

#	create	an	instance	of	the	API	class

api_instance	=	swagger_client.DefaultApi()

try:

				api_response	=	api_instance.cpu_get()

				pprint(api_response)

except	ApiException	as	e:

				print("Exception	when	calling	DefaultApi->cpu_get:	%s\n"	%	e)

{'model':	'Intel(R)	Core(TM)2	Quad	CPU				Q9550		@	2.83GHz'}

Although	we	develop	and	 run	 the	example	on	one	 localhost	machine,	you	can
separate	the	process	into	two	separate	machines.	E.g.,	on	a	server	with	external
IP	or	even	DNS	name	 to	deploy	 the	server-side	code,	and	on	a	 local	 laptop	or
workstation	to	deploy	the	client-side	code.	In	this	case,	please	make	changes	on
the	API	definition	accordingly,	e.g.,	the	host	value.

8.4	AUTOMATED	REST	SERVICE	GENERATION
WITH	CONEXION	FOR	OPENAPI	3.0

8.4.1	REST	SPECIFICATIONS	☁�

RESTful	services	have	undoubtedly	become	the	de-facto	software	architectural
style	 for	 creating	Web	 services.	 A	 REST	 API	 specification	 would	 define	 the
attributes	and	constraints	to	be	used	in	the	web	service.	There	have	been	multiple
specifications	that	have	been	in	use	such	as	OpenAPI	(formally	called	Swagger)
[58],	RAML	[59],	tinyspec	[60],	and	API	Blueprint	[61].

8.4.1.1	OPENAPI

Over	 the	 years,	 Open	 API	 specification	 has	 become	 the	 most	 popular	 with	 a
much	 larger	 community	 behind	 it.	 Therefore,	 this	 section	would	 focus	 on	 the
latest	specification,	OpenAPI	3.0	(OAS	3.0)	[62].

According	to	the	OAS	documentation	[63],	it	allows	users	to,

Describe	endpoints	and	operations	on	each	endpoint
Specify	operation	parameters,	inputs,	and	outputs	for	each	operation
Handle	authentication
Describe	contact,	license,	terms	of	use	and	other	information

API	specifications	can	be	written	 in	YAML	or	 JSON.	OAS	also	comes	with	a
rich	 toolkit	 that	 includes	 Swagger	 Editor	 [64],	 Swagger	UI	 [65]	 and	 Swagger
Codegen	[66],	that	creates	an	end-to-end	development	environment,	even	for	the
users	who	are	new	to	OAS.

Section	OpenAPI	Specification	details	more	on	the	OAS	2.0	specification.

https://github.com/OAI/OpenAPI-Specification
https://raml.org/
https://github.com/Ajaxy/tinyspec
https://apiblueprint.org/
https://swagger.io/blog/news/announcing-openapi-3-0/
https://swagger.io/docs/specification/about/
http://editor.swagger.io/
https://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-codegen

8.4.1.1.1	Open	API	3.0	Specification	(OAS	3.0)

OAS	3.0	key	definitions	are	depicted	in	Figure	16

Figure	16:	Components	of	OAS	3.0	Source

The	 basic	 structure	 of	 the	 definitions	would	 look	 like	 this.	 The	 sample	REST
service	exposes	http://localhost:8080/cloudmesh	basepath.	Under	that	base	path,
an	 endpoint	 has	 been	 exposed	 as	 cloudmesh/cpu,	 which	 would	 return	 CPU
information	of	the	server.	It	uses	a	predefined	schema	to	return	the	results,	which
is	 defined	 under	 the	 components/schemas.	 See	 the	 Section	 OpenAPI	 REST

https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/

Service	via	Introspection	for	the	detailed	example.

8.4.1.1.1.1	Definitions

Metadata:

OAS	3.0	requires	a	specification	definition	at	the	start	under	the	openapi	field.

Next,	 metadata	 can	 be	 specified	 under	 info	 field	 such	 as	 title,	 version,
description,	etc.	Additionally,	license,	contact	information	can	also	be	specified.
tile	and	version	are	mandatory	fields	under	info.

Servers:

The	 servers	 section	 defines	 the	 server	 URLs	 with	 the	 basepath.	 Optionally,	 a
description	can	be	added.

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	

						A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

Paths:

The	paths	section	specifies	all	the	endpoints	exposed	by	the	API	and	the	HTTP
operations	supported	by	these	endpoints.

Operation	ID:

When	using	introspection	for	REST	services	(using	Connexion),	we	would	need
to	 point	 to	 the	 operation	 that	 would	 ultimately	 carry	 out	 the	 request.	 This
operation	is	specified	by	the	operationID.

Parameters:

If	the	service	endpoint	accepts	URL	parameters	(ex:	/cpu/cache/{cache_level}	or
/cpu?arch=x86),	headers	or	cookies,	those	can	also	be	specified	under	a	path.

Request	Body:

When	 a	 request	 is	 sent	 with	 a	 body,	 such	 as	 POST,	 that	 is	 specified	 in	 the

servers:

		-	url:	http://localhost:8080/cloudmesh

				description:	Cloudmesh	server	basepath	

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

...

paths:

		/cpu:

...

						operationId:	cpu.get_processor_name

paths:

		/cpu/cache/{cache_level}:

				get:

						summary:	Returns	the	cache	size	of	the	specified	level	

						parameters:

								-	name:	cache_level

										in:	path

										required:	true

										description:	Parameter	description	in	CommonMark	or	HTML.

										schema:

												type	:	string

												minimum:	1

						responses:	

								'200':

										description:	OK

requestBody	under	a	path.

Responses:

For	 each	path,	 responses	 can	 be	 specified	with	 the	 corresponding	 status	 codes
such	as	200	OK	or	404	Not	Found.	A	response	may	return	a	response	body,	that
can	be	defined	under	content.

Schemas:

The	components/schemas	 section	 allows	 users	 to	 define	 schemas	 for	 inputs	 or
outputs	that	can	be	referenced	via	$ref	tag.

paths:

		/upload:

				post:

						summary:	upload	input

						requestBody:

								content:

										multipart/form-data:

												schema:

														type:	object

														properties:

																file:

																		type:	string

																		format:	binary

						responses:	

								'200':

										description:	OK

...

paths:

		/cpu:

...

								responses:

												'200':

														description:	cpu	info

														content:

																application/json:

																		schema:

																				$ref:	"#/components/schemas/cpu"

...

paths:

		/cpu:

...

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

...

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

Authentication:

Under	 the	components	 sections,	 securitySchemes	 can	 also	be	 specified	 such	 as
Basic	Auth.

According	to	the	current	OAS	3.0,	supported	authentication	methods	are,

HTTP	authentication:	Basic,	Bearer,	and	others.
API	key	as	a	header	or	query	parameter	or	in	cookies
OAuth2
OpenID	Connect	Discovery

8.4.1.2	RAML

RAML	[59]	 (RESTful	API	Modeling	Language)	 is	a	 specification	proposed	 in
2013,	 and	 it	 is	 based	 on	YAML	 format.	 The	 specification	 is	managed	 by	 the
RAML	Worker	 Group.	 It	 initially	 came	 out	 as	 a	 proprietary	 vendor	 language
(specification)	 but	 later	 was	 open-sourced.	 As	 of	 Sep	 2019,	 the	 latest
specification	is	RAML	1.0	[67].

Following	is	an	example	RAML	specification	from	the	RAML.org

components:

		securitySchemes:

				BasicAuth:

						type:	http

						scheme:	basic

security:

		-	BasicAuth:	[]

#%RAML	1.0

title:	Hello	world	#	required	title

/helloworld:	#	optional	resource

		get:	#	HTTP	method	declaration

				responses:	#	declare	a	response

						200:	#	HTTP	status	code

								body:	#	declare	the	content	of	the	response

										application/json:	#	media	type

												type:	|	#	structural	definition	of	a	response	(schema	or	type)

														{

																"title":	"Hello	world	Response",

																"type":	"object",

																"properties":	{

																		"message":	{

																				"type":	"string"

																		}

																}

														}

												example:	|	#	example	of	how	a	response	looks

														{

																"message":	"Hello	world"

														}

https://raml.org/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://github.com/raml-org/raml-examples/blob/master/helloworld/helloworld.raml

In	 the	 current	 context,	 the	 industry	 seems	 to	 be	 adopting	OpenAPI	more	 than
RAML.	 Consequently,	 some	 of	 the	 main	 contributors	 of	 RAML,	 such	 as
MuleSoft,	have	 joined	 the	Open	API	 Initiative	 since	2017.	Hence,	 it	 is	 safe	 to
conclude	that	Open	API	would	be	the	dominant	REST	API	specification	in	the
web	services	domain.

Furthermore,	there	are	tools	available	to	switch	between	the	specifications,	such
as	RAML	Web	API	Parser,	which	 can	 convert	RAML	 to	Open	API	 and	vice-
versa.

8.4.1.3	API	Blueprint

API	 Blueprint	 [61]	 is	 another	 specification	 available	 currently	 which	 uses
Markdown	syntax.	As	of	Sep	2019	the	latest	version	available	is	1A-rev9.

8.4.1.4	JsonAPI

As	 the	 name	 suggests,	 JSON	 API[68]	 attempts	 to	 leverage	 web	 services
specifications	using	JSON	format.	It	reached	a	stable	version	1.0	in	May	2015,
but	there	have	been	no	revisions	since	then.

8.4.1.5	Tinyspec

Tinyspec[60]	 is	 a	 lightweight	 alternative	 to	Open	API.	 It	 has	 not	 been	 able	 to
enter	into	the	mainstream.

8.4.1.6	Tools

There	are	 a	number	of	 tools	 available	 in	 the	REST	Web	services	 specification
domain.	 A	 classification	 of	 REST	 tools	 can	 be	 found	 in	 the
Section	¿sec:rest_classification?	section.

8.4.1.6.1	Connexion

Connexion[69]	is	one	such	tool	that	is	based	on	Open	API,	and	it	is	widely	used
in	the	Python	environment.	This	framework	allows	users	to	define	Web	services

https://github.com/raml-org/webapi-parser
https://apiblueprint.org/
https://jsonapi.org
https://github.com/Ajaxy/tinyspec
https://github.com/zalando/connexion

in	Open	API	and	then	map	those	services	to	Python	functions	conveniently.	We
would	be	using	Connexion	when	we	create	REST	services	using	 introspection
Section	8.4.2.

Here	is	an	example	from	the	Connexion	official	website	[69].

This	service	would	map	to	the	following	post_greeting	Python	function.

8.4.2	OPENAPI	3.0	REST	SERVICE	VIA	INTROSPECTION	☁�

The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	 read	 in	 the	 specification	 from	 its	 YAML	 file.	 It	 then	 introspects	 and
dynamically	creates	methods	that	are	used	for	the	implementation	of	the	server.

The	full	example	for	this	is	available	in

https://github.com/cloudmesh-

openapi:	"3.0.0"

info:

		title:	Hello	World

		version:	"1.0"

servers:

		-	url:	http://localhost:9090/v1.0

paths:

		/greeting/{name}:

				post:

						summary:	Generate	greeting

						description:	Generates	a	greeting	message.

						operationId:	hello.post_greeting

						responses:

								200:

										description:	greeting	response

										content:

												text/plain:

														schema:

																type:	string

																example:	"hello	dave!"

						parameters:

								-	name:	name

										in:	path

										description:	Name	of	the	person	to	greet.

										required:	true

										schema:

												type:	string

												example:	"dave"

import	connexion

def	post_greeting(name:	str)	->	str:

				return	'Hello	{name}'.format(name=name)

if	__name__	==	'__main__':

				app	=	connexion.FlaskApp(__name__,	port=9090,	specification_dir='openapi/')

				app.add_api('helloworld-api.yaml',	arguments={'title':	'Hello	World	Example'})

				app.run()

https://github.com/zalando/connexion/blob/master/examples/openapi3/helloworld/openapi/helloworld-api.yaml
https://github.com/cloudmesh-community/book/tree/master/examples/rest/cpu

community/book/tree/master/examples/rest/cpu

An	extensive	documentation	is	available	at

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 returns	 the	 cpu	 information	 of	 a	 computer	 to	 dynamically
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py
files	as	our	YAML	file	calls	out	methods	from	cpu.py

The	YAML	file	looks	as	follows.

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

Here	 we	 implement	 a	 get	 method	 and	 associate	 is	 with	 the	 URL	 /cpu.	 The
operationid,	 defines	 the	 method	 that	 we	 call	 which,	 as	 we	 used	 the	 local
directory,	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the
operation	id.

A	 straightforward	 function	 to	 return	 the	 CPU	 information	 is	 defined	 in	 cpu.py
which	we	list	next

We	 have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	server	in	two	different	terminals

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

			osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

			pip	install	-r	requirements.txt

demo:

			$(call	terminal,	python	server.py)

			sleep	3

			@echo	"==="

			@echo	"Get	the	info"

			@echo	"==="

When	we	call

our	demo	is	run.

8.4.2.1	Verification

It	is	essential	to	be	able	to	verify	if	a	YAML	file	is	correct.	To	identify	this,	the
easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	version	available
at:

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example,	and	paste	your	YAML
file	in	it.	Debug	messages	are	helping	you	to	correct	things.

A	terminal-based	command	may	also	be	helpful	but	is	a	bit	difficult	to	read.

8.4.2.2	Swagger-UI

Swagger	comes	with	a	convenient	UI	to	invoke	REST	API	calls	using	the	Web
browser	rather	than	relying	on	the	curl	commands.

Once	 the	request	and	response	definitions	are	correctly	specified,	you	can	start
the	server	by,

Then	 the	 UI	 would	 also	 be	 spawned	 under	 the	 service	 URL	 http://[service
url]/ui/

Example:	http://localhost:8080/cloudmesh/ui/

8.4.2.3	Mock	service

			curl	http://localhost:8080/cloudmesh/cpu

			@echo

			@echo	"==="

make	demo

$	connexion	run	cpu.yaml	--stub	--debug

$	python	server.py

https://editor.swagger.io/
http://localhost:8080/cloudmesh/ui/

In	some	cases,	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case,	it	is	useful	to	run	a	mock
service.	You	can	invoke	such	a	service	with

8.4.2.4	Exercise

OpenAPI.Conexion.1:

Modify	 the	makefile,	 so	 it	also	works	on	ubuntu,	but	do	not	disable
the	ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on
the	 OS.	 You	 can	 look	 at	 the	 makefiles	 that	 create	 this	 book	 as	 an
example.	Find	alternatives	to	starting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile,	 so	 it	 also	 works	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	PowerShell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	GitBash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	compute	service	interfacing	with	AWS,	Azure,	Google	or
OpenStack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
GitHub,	iCloud,	FTP,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	 and	 then	 implement	 it	 for	 different	 providers.	 The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

$	connexion	run	cpu.yaml	--mock=all	-v

This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so
that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	Tornado	so	the	service	could	run	in	production.

8.4.3	REST	AI	SERVICES	EXAMPLE	☁�

Now	we	present	a	more	involved	example	which	uses	OpenAPI	3.0	specification

to	 invoke	 	 K-means	 Clustering	 routine	 in	 scikit-learn	 ???.	 Scikit-learn	 k-
means	user-guide	can	be	found	Scikit-learn	K-Means	package	[70].

This	involves	the	following.

Upload	a	file	with	points	to	create	the	k-means	clustering	model.
Method	to	call	scikit-learn	KMeans	module
Upload	a	file	with	points	that	need	to	be	predicted	and	return	a	file	with	the
predicted	cluster	IDs.
Additionally,	 scikit-learn	 KMeans	 module	 provides	 routines	 to	 get	 the
cluster	centers,	labels,	etc.	which	can	also	be	exposed	as	REST	services.

To	create	the	REST	services,	we	would	be	using	OpenAPI	3.0	REST	service	via
introspection.

8.4.3.1	Service	Endpoints/	Paths

8.4.3.1.1	Path	kmeans/upload

A	POST	 request	with	 a	 file	 containing	points	 to	 create	 the	k-means	 clustering
model.	POST	content	would	be	multipart/form-data.

https://www.youtube.com/watch?v=aGRdp4TKc4c&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=2

For	an	example	consider	the	following	6	points	in	XY	dimensions,

Curl	command:

Service	 implementation	would	 look	 like	 this.	The	 file	 content	 is	 received	 as	 a
werkzeug.datastructures.FileStorage	 sobject	 in	 Flask,	 which	 can	 be	 used	 to
stream	 into	 the	 filesystem.	The	backend	keeps	 two	dicts	 to	map	 Job	 ID	 to	 file
and	vise-versa	(inputs	and	inputs_r).

If	the	request	is	successful,	a	JSON	will	be	returned	with	the	file	name	and	the
associated	job	ID.	Job	ID	can	be	considered	ID	that	would	connect,	inputs	to	the
models,	and	the	predicted	outputs.

8.4.3.1.2	Path	kmeans/fit

A	POST	request	with	a	JSON	body	containing	Job	ID	and	model	parameters	that
need	to	pass	on	to	the	scikit-learn	KMeans	model	initialization	such	as,	number
of	clusters	(n_clusters),	maximum	iterations	(max_iter),	etc.

Example:

1,	2

1,	4

1,	0

10,	2

10,	4

10,	0	

$	curl	-X	POST	"http://localhost:8080/kmeans/upload"	\

								-H	"accept:	application/json"	\	

								-H	"Content-Type:	multipart/form-data"	\	

								-F	"file=@model.csv;type=text/csv"

def	upload_file(file=None):

				filename	=	file.filename

				in_file	=	INPUT_DIR	+	'/'	+	filename

				if	not	os.path.exists(in_file):

								file.save(in_file)		#	save	the	input	file

				if	in_file	not	in	inputs_r:

								job_id	=	len(inputs)

								inputs.update({job_id:	in_file})

								inputs_r.update({in_file:	job_id})

				else:

								job_id	=	inputs_r[in_file]

				return	jsonify({'job_id':	job_id,	'filename':	filename})

{

		"filename":	"model.csv",	

		"job_id":	0

}

{

https://werkzeug.palletsprojects.com/en/0.15.x/datastructures/#werkzeug.datastructures.FileStorage

curl	command:

Service	implementation	looks	like	this.	POST	request	body	will	be	populated	as
a	dict	and	passed	on	to	the	method	by	Flask	(body).	Once	the	model	is	fitted,	it
will	be	put	 into	an	 in-memory	dict	 (models)	 against	 its	 Job	 ID.	Labels	will	 be
written	to	disk	as	a	file,	and	the	content	will	be	returned	as	a	CSV.

The	 response	 CSV	 file	 will	 be	 returned	with	 the	 corresponding	 labels	 for	 the
input	points.

8.4.3.1.3	Path	kmeans/predict

A	 POST	 request	 with	 a	 file	 containing	 the	 points	 to	 be	 predicted	 and	 the
corresponding	Job	ID	as	multipart/form-data.

		"job_id":	0,

		"model_params":	{

				"n_clusters":	3

		}

}

$	curl	-X	POST	"http://localhost:8080/kmeans/fit"	\

								-H	"accept:	text/csv"	\

								-H	"Content-Type:	application/json"	\

								-d	"{\"job_id\":0,\"model_params\":{\"n_clusters\":3}}"

def	kmeans_fit(body):

			print(body)

			job_id	=	body['job_id']

			if	job_id	not	in	inputs	or	not	os.path.exists(inputs[job_id]):

							abort(500,	"input	file	missing	for	job	id	"	+	str(job_id))

							return

			in_file	=	inputs[job_id]

			X	=	np.genfromtxt(in_file,	delimiter=",")		#	create	the	model

			params	=	dict(default_model_params)

			params.update(body['model_params'])

			kmeans	=	KMeans(**params).fit(X)

			models.update({job_id:	kmeans})		#	add	the	model	in	to	the	dict

			labels	=	OUTPUT_DIR	+	"/"	+	str(job_id)	+	".labels"

			np.savetxt(labels,	kmeans.labels_,	delimiter=",")

			return	send_file(labels)

1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

0.000000000000000000e+00

0.000000000000000000e+00

2.000000000000000000e+00

job_id=0

Points	to	be	predicted

curl	command:

Service	 implementation	 looks	 like	 this.	Note	 that	 there	 is	a	strange	behavior	 in
Flask	with	Connextion	where	the	file	content	will	be	passed	on	to	the	file	object
as	 a	werkzeug.datastructures.FileStorage	 object,	 but	 the	 Job	 ID	 is	 passed	 as	 a
dict	to	body	object.

The	response	would	send	out	the	corresponding	labels	of	the	passing	points	as	a
CSV	file.

8.4.3.2	Files

Files	of	this	example	can	be	found	here.

Open	API	3	service	definitions	-	api.yaml
Flask	server	-	server.py
Kmeans	service	implementation	-	kmeans.py

0,	0

12,	3

$	curl	-X	POST	"http://localhost:8080/kmeans/predict"	\

								-H	"accept:	text/csv"	\

								-H	"Content-Type:	multipart/form-data"	\	

								-F	"job_id=0"	\

								-F	"file=@predict.csv;type=text/csv"

def	kmeans_predict(body,	file=None):

				job_id	=	int(body['job_id'])

				if	job_id	in	models:

								p_file	=	OUTPUT_DIR	+	'/'	+	str(job_id)	+	'.p'

								file.save(p_file)

								p	=	np.genfromtxt(p_file,	delimiter=',')		#	read	the	predictions

								result	=	models[job_id].predict(p)

								print(result)

								res_file	=	OUTPUT_DIR	+	"/"	+	str(job_id)	+	".out"

								np.savetxt(res_file,	result,	delimiter=",")

								return	send_file(res_file)

				else:

								abort(500,	"model	not	found	for	job	id	"	+	str(job_id))

								return

1.000000000000000000e+00

0.000000000000000000e+00

https://werkzeug.palletsprojects.com/en/0.15.x/datastructures/#werkzeug.datastructures.FileStorage
https://github.com/cloudmesh-community/book/tree/master/examples/rest/kmeans
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/api.yaml
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/server.py
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/kmeans.py

Python	requirements	-	requirements.txt
Example	files	model.csv	and	predict.csv

8.4.3.3	Running	the	example

Go	to	the	example	directory.
Activate	the	Python3	venv	used	for	Cloudmesh
Install	requirements.txt

Start	the	server

Upload	a	file

Fit	the	kmeans	model

Predict	using	the	fitted	kmeans	model

Additionally,	 you	 can	 access	 the	 Swagger	UI	 for	 kmeans	 service	 in	 your
Flask	server	from	here

8.4.3.4	Notes

Above	 services	 can	easily	be	combined	 in	 the	backend	 to	 accept	 a	model
file,	together	with	a	prediction	input
File	 and	 to	 return	 the	 predicted	 output	 file	 (synchronous	 operation).	 But
usually,	we	can	expect	AI	jobs	to	be	long-running,	hence	the	services	would

$	pip	install	-r	requirements.txt

$	python	server.py

$	curl	-X	POST	"http://localhost:8080/kmeans/upload"	\

				-H	"accept:	application/json"	\

				-H	"Content-Type:	multipart/form-data"	\

				-F	"file=@model.csv;type=text/csv"

$	curl	-X	POST	"http://localhost:8080/kmeans/fit"	\

				-H	"accept:	text/csv"	\

				-H	"Content-Type:	application/json"	\

				-d	"{\"job_id\":0,\"model_params\":{\"n_clusters\":3}}"

$	curl	-X	POST	"http://localhost:8080/kmeans/predict"	\

				-H	"accept:	text/csv"	\

				-H	"Content-Type:	multipart/form-data"	\

				-F	"job_id=0"	\

				-F	"file=@predict.csv;type=text/csv"

https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/requirements.txt
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/model.csv
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/predict.csv
http://localhost:8080/kmeans/ui/

need	to	be	handled	asynchronously.
Additionally,	once	a	model	is	fitted,	users	should	be	able	to	reuse	the	model
for	multiple	predictions.	Hence	 it	 is	sensible	 to	separate	model	 fitting	and
predictions	into	separate	services.

9	REFERENCES

The	following	refernces	are	collected	automatically	from	multiple	sources.	☁�

[1]	“RAML.”	[Online].	Available:	https://raml.org/

[2]	 Sagger,	Available:	 https://swagger.io/blog/news/mulesoft-joins-the-openapi-
initiative/

[3]	“API	blueprint.”	[Online].	Available:	https://apiblueprint.org/

[4]	K.	Sandova,	“Top	specification	formats	for	rest	apis.”	Wep	Page,	Sep-2015
[Online].	 Available:	 https://nordicapis.com/top-specification-formats-for-rest-
apis/

[5]	 P.	 Gouras,	 “The	 role	 of	 s-cones	 in	 human	 vision,”	 Documenta
ophthalmologica,	vol.	106,	no.	1,	pp.	5–11,	2003.

[6]	 “Rods	 and	 cones.”	 Website	 [Online].	 Available:
https://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

[7]	 D.	 Mustafi,	 A.	 H.	 Engel,	 and	 K.	 Palczewski,	 “Structure	 of	 cone
photoreceptors,”	Progress	 in	retinal	and	eye	research,	vol.	28,	no.	4,	pp.	289–
302,	2009.

[8]	M.	Simoneau	and	J.	Price,	“Neural	networks	provide	solutions	to	real-world
problems:	Powerful	new	algorithms	to	explore,	classify,	and	identify	patterns	in
data.”	 Website,	 1998	 [Online].	 Available:
https://www.mathworks.com/company/newsletters/articles/neural-networks-
provide-solutions-to-real-world-problems-powerful-new-algorithms-to-explore-
classify-and-identify-patterns-in-data.html

[9]	F.	Manessi	and	A.	Rozza,	“Learning	combinations	of	activation	functions,”
CoRR,	 vol.	 abs/1801.09403,	 2018	 [Online].	 Available:
http://arxiv.org/abs/1801.09403

[10]	 “Python	 rest	 apis	with	 flask,	 connexion,	 and	 sqlalchemy.”	Website,	 2018

https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer-references.md
https://raml.org/
https://swagger.io/blog/news/mulesoft-joins-the-openapi-initiative/
https://apiblueprint.org/
https://nordicapis.com/top-specification-formats-for-rest-apis/
https://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html
https://www.mathworks.com/company/newsletters/articles/neural-networks-provide-solutions-to-real-world-problems-powerful-new-algorithms-to-explore-classify-and-identify-patterns-in-data.html
http://arxiv.org/abs/1801.09403

[Online].	Available:	https://realpython.com/flask-connexion-rest-api/

[11]	J.	Drayer,	S.	L.	Shapiro,	B.	Dwyer,	A.	L.	Morse,	and	J.	White,	“The	effects
of	 fantasy	 football	 participation	 on	 nfl	 consumption:	 A	 qualitative	 analysis,”
Sport	Management	Review,	vol.	13,	no.	2,	pp.	129–141,	2010.

[12]	 B.	 Gagnon,	 “What	 is	 the	 most	 important	 combine	 event	 for	 each	 nfl
position?”	 2018	 [Online].	 Available:
https://bleacherreport.com/articles/2760924-what-is-the-most-important-
combine-event-for-each-nfl-position#slide6

[13]	 T.	 Srivastava,	 “Introduction	 to	 k-nearest	 neighbors:	 Simplified	 (with
implementation	 in	 python),”	 2018	 [Online].	 Available:
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-
algorithm-clustering/

[14]	C.	Pautasso,	“RESTful	web	service	composition	with	bpel	for	rest,”	Data	&
Knowledge	Engineering,	vol.	68,	no.	9,	pp.	851–866,	2009.

[15]	 E.	 Novoseltseva,	 “Top	 10	 benefits	 of	 docker,”	 2017	 [Online].	 Available:
https://dzone.com/articles/top-10-benefits-of-using-docker

[16]	SPORTTECHIE,	“Sensors	are	taking	over	sports,”	2016.

[17]	 U.	 Von	 Luxburg,	 “A	 tutorial	 on	 spectral	 clustering,”	 Statistics	 and
computing,	vol.	17,	no.	4,	pp.	395–416,	2007.

[18]	 I.	 K.	 Fodor,	 “A	 survey	 of	 dimension	 reduction	 techniques,”	 Lawrence
Livermore	National	Lab.,	CA	(US),	2002.

[19]	 Available:	 http://www.fon.hum.uva.nl/praat/manual/k-
means_clustering_1__How_does_k-means_clustering_work_.html

[20]	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html

[21]	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score

https://realpython.com/flask-connexion-rest-api/
https://bleacherreport.com/articles/2760924-what-is-the-most-important-combine-event-for-each-nfl-position#slide6
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
https://dzone.com/articles/top-10-benefits-of-using-docker
http://www.fon.hum.uva.nl/praat/manual/k-means_clustering_1__How_does_k-means_clustering_work_.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score

[22]	“Harmonic	mean,”	Wikipedia.	Wikimedia	Foundation,	Mar-2019	[Online].
Available:	https://en.wikipedia.org/wiki/Harmonic_mean

[23]	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html

[24]	 “Kmeans	 clustering	 and	 3D	 plotting,”	 Kaggle.	 [Online].	 Available:
https://www.kaggle.com/timi01/k-means-clustering-and-3d-plotting

[25]	 K.	 Nishida,	 “Visualizing	 k-means	 clustering	 results	 to	 understand	 the
characteristics	 of	 clusters	 better,”	 learn	data	 science.	 learn	 data	 science,	Nov-
2018	 [Online].	 Available:	 https://blog.exploratory.io/visualizing-k-means-
clustering-results-to-understand-the-characteristics-of-clusters-better-
b0226fb3dd10

[26]	 G.	 Seif,	 “5	 quick	 and	 easy	 data	 visualizations	 in	 python	 with	 code,”
Towards	Data	Science.	 Towards	Data	 Science,	Mar-2018	 [Online].	Available:
https://towardsdatascience.com/5-quick-and-easy-data-visualizations-in-python-
with-code-a2284bae952f

[27]	 N.	 Sharma,	 “Ways	 to	 detect	 and	 remove	 the	 outliers,”	 Towards	 Data
Science.	 Towards	 Data	 Science,	 May-2018	 [Online].	 Available:
https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-
404d16608dba

[28]	 “Multiclass	 classification,”	Wikipedia.	 Wikimedia	 Foundation,	 Apr-2019
[Online].	Available:	https://en.wikipedia.org/wiki/Multiclass_classification

[29]	 AbhishekAbhishek,	 “Training	 logistic	 regression	 using	 scikit	 learn	 for
multi-class	 classification,”	 Stack	 Overflow.	 [Online].	 Available:
https://stackoverflow.com/questions/32074630/training-logistic-regression-
using-scikit-learn-for-multi-class-classification

[30]	 “Decision	 tree	 learning,”	 Wikipedia.	 Wikimedia	 Foundation,	 Apr-2019
[Online].	Available:	https://en.wikipedia.org/wiki/Decision_tree_learning

[31]	“K-nearest	neighbors	algorithm,”	Wikipedia.	Wikimedia	Foundation,	Apr-
2019	 [Online].	 Available:	 https://en.wikipedia.org/wiki/K-
nearest_neighbors_algorithm

https://en.wikipedia.org/wiki/Harmonic_mean
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
https://www.kaggle.com/timi01/k-means-clustering-and-3d-plotting
https://blog.exploratory.io/visualizing-k-means-clustering-results-to-understand-the-characteristics-of-clusters-better-b0226fb3dd10
https://towardsdatascience.com/5-quick-and-easy-data-visualizations-in-python-with-code-a2284bae952f
https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://en.wikipedia.org/wiki/Multiclass_classification
https://stackoverflow.com/questions/32074630/training-logistic-regression-using-scikit-learn-for-multi-class-classification
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

[32]	Available:	https://multivariatestatsjl.readthedocs.io/en/latest/mclda.html

[33]	 “Linear	 discriminant	 analysis,”	Wikipedia.	 Wikimedia	 Foundation,	 Apr-
2019	 [Online].	 Available:
https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Linear_discriminant_in_high_dimension

[34]	“Naive	bayes	for	machine	learning,”	Machine	Learning	Mastery.	Sep-2016
[Online].	 Available:	 https://machinelearningmastery.com/naive-bayes-for-
machine-learning/

[35]	 “1.9.	 Naive	 bayes,”	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/naive_bayes.html

[36]	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

[37]	“SVM	multi-class	classification,”	Apache	Ignite	Documentation.	 [Online].
Available:	https://apacheignite.readme.io/docs/svm-multi-class-classification

[38]	 “Sklearn.svm.SVC,”	 scikit.	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

[39]	M.	Stickgold	Malia,	“Replaying	the	game:	Hypnagogic	images	in	normals
and	 amnesics,”	 Oct.	 2000	 [Online].	 Available:
https://science.sciencemag.org/content/sci/290/5490/350.full.pdf

[40]	B.	News,	“Tetris	’helps	to	reduce	trauma’.”	Web	Page,	Jan-2007	[Online].
Available:	http://news.bbc.co.uk/2/hi/health/7813637.stm

[41]	C.	T.	W.	Championship,	 “Results.”	Web	Page,	 2018	 [Online].	Available:
https://thectwc.com/results/

[42]	 P.	 S.	 University,	 “Correlation	 coefficient	 r.”	 Web	 Page,	 2018	 [Online].
Available:	https://newonlinecourses.science.psu.edu/stat462/node/96/

[43]	Macklin,	“Regression	performance	metrics.”	Web	Page;	Indiana	University
School	of	Informatics,	Computing,	&	Engineering,	Sep-2018.

https://multivariatestatsjl.readthedocs.io/en/latest/mclda.html
https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Linear_discriminant_in_high_dimension
https://machinelearningmastery.com/naive-bayes-for-machine-learning/
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://apacheignite.readme.io/docs/svm-multi-class-classification
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://science.sciencemag.org/content/sci/290/5490/350.full.pdf
http://news.bbc.co.uk/2/hi/health/7813637.stm
https://thectwc.com/results/
https://newonlinecourses.science.psu.edu/stat462/node/96/

[44]	Macklin,	 “Introduction	 to	 decision	 trees.”	Web	 Page;	 Indiana	 University
School	of	Informatics,	Computing,	&	Engineering,	Oct-2018.

[45]	F.	Pedregosa	et	al.,	“Scikit-learn:	Machine	learning	in	Python,”	Journal	of
Machine	Learning	Research,	vol.	12,	pp.	2825–2830,	2011.

[46]	 F.	 E.	 Commission,	 “Election	 results.”
https://transition.fec.gov/pubrec/electionresults.shtml,	2019.

[47]	 S.	 M.	 Group,	 “Candidates	 on	 the	 issues.”
https://www.ontheissues.org/default.htm,	2018.

[48]	 D.	 Gayo-Avello,	 P.	 T.	 Metaxas,	 and	 E.	 Mustafaraj,	 “Limits	 of	 electoral
predictions	using	twitter,”	in	Fifth	international	aaai	conference	on	weblogs	and
social	media,	2011.

[49]	 B.	 O’Connor,	 R.	 Balasubramanyan,	 B.	 R.	 Routledge,	 and	 N.	 A.	 Smith,
“From	tweets	to	polls:	Linking	text	sentiment	to	public	opinion	time	series,”	in
Fourth	international	aaai	conference	on	weblogs	and	social	media,	2010.

[50]	 T.	 N.	 Jagatic,	 N.	 A.	 Johnson,	 M.	 Jakobsson,	 and	 F.	 Menczer,	 “Social
phishing,”	Communications	of	the	ACM,	vol.	50,	no.	10,	pp.	94–100,	2007.

[51]	L.	Bridges,	“The	changing	face	of	malware,”	Network	Security,	vol.	2008,
no.	1,	pp.	17–20,	2008.

[52]	H.	Zhang,	“The	optimality	of	naive	bayes,”	A	A,	vol.	1,	no.	2,	p.	3,	2004.

[53]	D.	Sculley	and	G.	M.	Wachman,	“Relaxed	online	svms	for	spam	filtering,”
in	 Proceedings	 of	 the	 30th	 annual	 international	 acm	 sigir	 conference	 on
research	and	development	in	information	retrieval,	2007,	pp.	415–422.

[54]	 A.	 Khorsi,	 “An	 overview	 of	 content-based	 spam	 filtering	 techniques,”
Informatica,	vol.	31,	no.	3,	2007.

[55]	I.	Androutsopoulos,	J.	Koutsias,	K.	V.	Chandrinos,	G.	Paliouras,	and	C.	D.
Spyropoulos,	 “An	 evaluation	 of	 naive	 bayesian	 anti-spam	 filtering,”	 arXiv
preprint	cs/0006013,	2000.

https://transition.fec.gov/pubrec/electionresults.shtml
https://www.ontheissues.org/default.htm

[56]	 S.	 R.	 Gunn	 and	 others,	 “Support	 vector	 machines	 for	 classification	 and
regression,”	ISIS	technical	report,	vol.	14,	no.	1,	pp.	5–16,	1998.

[57]	V.	Metsis,	I.	Androutsopoulos,	and	G.	Paliouras,	“Spam	filtering	with	naive
bayes-which	naive	bayes?”	in	CEAS,	2006,	vol.	17,	pp.	28–69.

[58]	 OpenAPI	 Initiative,	 “The	 openapi	 specification.”	 Web	 Page	 [Online].
Available:	https://github.com/OAI/OpenAPI-Specification

[59]	RAML,	“RAML	version	1.0:	RESTful	api	modeling	language.”	Web	Page
[Online].	 Available:	 https://github.com/raml-org/raml-
spec/blob/master/versions/raml-10/raml-10.md

[60]	 tinyspec,	 “Tinyspec.”	 Web	 Page	 [Online].	 Available:
https://github.com/Ajaxy/tinyspec

[61]	 api	 blueprint,	 “API	 blueprint.	 A	 powerful	 high-level	 api	 description
language	for	web	apis.”	Web	Page	[Online].	Available:	https://apiblueprint.org/

[62]	OpenAPI	Initiative,	“Announcing	the	official	release	of	openapi	3.0.”	Web
Page,	 2017	 [Online].	 Available:	 https://swagger.io/blog/news/announcing-
openapi-3-0/

[63]	 OpenAPI	 Initiative,	 “The	 openapi	 docs.”	Web	 Page	 [Online].	 Available:
https://swagger.io/docs/specification/about/

[64]	“Swagger	inspector.”	[Online].	Available:	http://editor.swagger.io/

[65]	 S.	 Software,	 “Swagger	 ui.”	 Web	 Page	 [Online].	 Available:
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/

[66]	 S.	 Software,	 “Swagger	 codegen	 documentation.”	 Web	 Page	 [Online].
Available:	https://swagger.io/docs/open-source-tools/swagger-codegen/

[67]	RAML,	“RAML.”	Web	Page	[Online].	Available:	https://raml.org/

[68]	 Yehuda	 Katz,	 “JSON:API.”	 Web	 Page	 [Online].	 Available:
https://jsonapi.org/

https://github.com/OAI/OpenAPI-Specification
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://github.com/Ajaxy/tinyspec
https://apiblueprint.org/
https://swagger.io/blog/news/announcing-openapi-3-0/
https://swagger.io/docs/specification/about/
http://editor.swagger.io/
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/
https://swagger.io/docs/open-source-tools/swagger-codegen/
https://raml.org/
https://jsonapi.org/

[69]	 Zalando	 SE,	 “Connexion.”	 Web	 Page	 [Online].	 Available:
https://github.com/zalando/connexion

[70]	 scikit-learn	 developers,	 Web	 Page	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

https://github.com/zalando/connexion
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

	1 PREFACE
	1.1 ABSTRACT ☁️
	1.1.1 Purpose of the Work Reported

	2 TECHNOLOGY ASSESMENT
	2.1 Task 2 – Technology Analysis ☁️
	2.1.1 Previous accomplishments

	2.2 RAML ☁️
	2.3 API Blueprint ☁️
	2.4 OpenAPI ☁️
	2.4.1 Swagger CodeGen

	2.5 Cloudmesh OpenAPI ☁️

	3 REST SERVICES
	3.1 Task 3: Big Data REST Services ☁️
	3.2 OpenAPI REST Services with Swagger ☁️
	3.2.1 Swagger Tools
	3.2.2 Swagger Community Tools
	3.2.2.1 Converting Json Examples to OpenAPI YAML Models

	3.3 OpenAPI 3.0 REST Service via Introspection ☁️
	3.3.1 Verification
	3.3.2 Swagger-UI
	3.3.3 Mock service
	3.3.4 Exercise

	4 REST SPECIFICATIONS
	4.1 Task 4 – Generalized Rest Service Specifications ☁️
	4.2 Amazon Redshift OpenAPI Specification ☁️
	4.3 Virtual Directory ☁️
	4.4 Elastic Map Reduce ☁️

	5 APPLICATIONS
	5.1 Task 5 – Application Examples ☁️
	5.2 S-cone Classification Using REST Services and Machine Learning ☁️
	5.2.1 Abstract
	5.2.2 Introduction
	5.2.3 Data
	5.2.3.1 Preprocessing
	5.2.3.2 Visualization

	5.2.4 Model Discussion
	5.2.4.1 Failures
	5.2.4.2 Activation Function
	5.2.4.3 Decision

	5.2.5 REST Service Implementations
	5.2.6 Specification

	5.3 Rookie Fantasy Football Point Prediction ☁️
	5.3.1 Abstract
	5.3.2 Introduction
	5.3.3 Data Set
	5.3.4 KNN Algorithm
	5.3.5 Implementation
	5.3.6 Limitations
	5.3.7 Conclusion
	5.3.8 Specification

	5.4 Analysis of soccer data with kmeans ☁️
	5.4.1 Abstract
	5.4.2 Introduction
	5.4.2.1 Sport Analytics
	5.4.2.2 Sensors in Sports

	5.4.3 Soccer Dataset
	5.4.4 Algorithm Discussion
	5.4.4.1 K-means
	5.4.4.2 Spectral Clustering
	5.4.4.3 Dimensional Reduction

	5.4.5 Results
	5.4.6 Analysis
	5.4.7 Specification

	5.5 Tetris Score Analysis Server ☁️
	5.5.1 Abstract
	5.5.2 Introduction
	5.5.3 Design
	5.5.4 Architecture
	5.5.5 Dataset
	5.5.6 Results
	5.5.7 Conclusion
	5.5.8 Specification

	5.6 Political Bias and Voting Trends ☁️
	5.6.1 Abstract
	5.6.2 Introduction
	5.6.3 Requirements
	5.6.4 Design
	5.6.4.1 Python
	5.6.4.2 REST Service
	5.6.4.3 Docker

	5.6.5 Dataset
	5.6.6 Results
	5.6.7 Discussion
	5.6.8 Conclusion
	5.6.9 Work Breakdown
	5.6.10 Specification

	5.7 Spam Analysis with Spamalot ☁️
	5.7.1 Abstract
	5.7.2 Introduction
	5.7.3 The Algorithm
	5.7.3.1 Naive Bayes
	5.7.3.1.1 Metrics

	5.7.3.2 Support Vector Machines (SVM)

	5.7.4 The Data Set
	5.7.5 Model Results
	5.7.6 Implementation
	5.7.6.1 The Server
	5.7.6.2 The Upload Function and Classification
	5.7.6.3 Specification

	5.7.7 Conclusion

	6 DESSIMINTAION
	6.1 Task 6 – Dissemination ☁️
	6.1.1 Conference Presentation
	6.1.2 Task 6.1 Community Testing

	7 RESOURCES
	7.1 Task 7 – Development Resources ☁️

	8 TUTORIALS
	8.1 Overview ☁️
	8.2 AUTOMATED REST SERVICE GENERATION WITH EVE
	8.2.1 Rest Services with Eve ☁️
	8.2.1.1 Ubuntu install of MongoDB
	8.2.1.2 macOS install of MongoDB
	8.2.1.3 Windows 10 Installation of MongoDB
	8.2.1.4 Database Location
	8.2.1.5 Verification
	8.2.1.6 Building a simple REST Service
	8.2.1.7 Interacting with the REST service
	8.2.1.8 Creating REST API Endpoints
	8.2.1.9 REST API Output Formats and Request Processing
	8.2.1.10 REST API Using a Client Application
	8.2.1.11 Towards cmd5 extensions to manage eve and mongo 🅾️

	8.2.2 HATEOAS ☁️
	8.2.2.1 Filtering
	8.2.2.2 Pretty Printing
	8.2.2.3 XML

	8.2.3 Extensions to Eve ☁️
	8.2.3.1 Object Management with Eve and Evegenie
	8.2.3.1.1 Installation
	8.2.3.1.2 Starting the service
	8.2.3.1.3 Creating your own objects

	8.3 AUTOMATED REST SERVICE GENERATION WITH CODEGEN FOR OPENAPI 2.0
	8.3.1 OpenAPI 2.0 Specification ☁️
	8.3.1.1 The Virtual Cluster example API Definition
	8.3.1.1.1 Terminology
	8.3.1.1.2 Specification

	8.3.1.2 References

	8.3.2 OpenAPI REST Service via Introspection ☁️
	8.3.2.1 Verification
	8.3.2.2 Mock service
	8.3.2.3 Exercise

	8.3.3 OpenAPI REST Service via Codegen ☁️
	8.3.3.1 Step 1: Define Your REST Service
	8.3.3.2 Step 2: Server Side Stub Code Generation and Implementation
	8.3.3.2.1 Setup the Codegen Environment
	8.3.3.2.2 Generate Server Stub Code
	8.3.3.2.3 Fill in the actual implementation

	8.3.3.3 Step 3: Install and Run the REST Service:
	8.3.3.3.1 Start a virtualenv:
	8.3.3.3.2 Make sure you have the latest pip:
	8.3.3.3.3 Install the requirements of the server side code:
	8.3.3.3.4 Install the server-side code package:
	8.3.3.3.5 Run the service
	8.3.3.3.6 Verify the service using a web browser:

	8.3.3.4 Step 4: Generate Client-Side Code and Verify
	8.3.3.4.1 Client-side code generation:
	8.3.3.4.2 Install the client-side code package:
	8.3.3.4.3 Using the client API to interact with the REST service

	8.3.3.5 Towards a Distributed Client Server

	8.4 AUTOMATED REST SERVICE GENERATION WITH CONEXION FOR OPENAPI 3.0
	8.4.1 REST Specifications ☁️
	8.4.1.1 OPENAPI
	8.4.1.1.1 Open API 3.0 Specification (OAS 3.0)
	8.4.1.1.1.1 Definitions

	8.4.1.2 RAML
	8.4.1.3 API Blueprint
	8.4.1.4 JsonAPI
	8.4.1.5 Tinyspec
	8.4.1.6 Tools
	8.4.1.6.1 Connexion

	8.4.2 OpenAPI 3.0 REST Service via Introspection ☁️
	8.4.2.1 Verification
	8.4.2.2 Swagger-UI
	8.4.2.3 Mock service
	8.4.2.4 Exercise

	8.4.3 REST AI services Example ☁️
	8.4.3.1 Service Endpoints/ Paths
	8.4.3.1.1 Path kmeans/upload
	8.4.3.1.2 Path kmeans/fit
	8.4.3.1.3 Path kmeans/predict

	8.4.3.2 Files
	8.4.3.3 Running the example
	8.4.3.4 Notes

	9 REFERENCES

